Analysis I

Wintersemester 2025/2026

Mathematisches Institut Heinrich-Heine-Universität Düsseldorf Priv.-Doz. Dr. Matthias Köhne

Übungsblatt 6

Ausgabe: Fr., 21.11.2025, 14:00 Uhr Abgabe: Mo., 01.12.2025, 18:00 Uhr

Besprechung: Di., 02.12.2025 bzw. Mi., 03.12.2025

Aufgabe 6.1: (Kommutative, unitäre Ringe)

Sei $A \neq \emptyset$ eine Menge. Zeigen Sie, dass $(\mathcal{P}(A), \triangle, \cap)$ ein kommutativer, unitärer Ring ist, wobei $0_{\mathcal{P}(A)} = \emptyset$ und $1_{\mathcal{P}(A)} = A$. Gelten die Gesetze (O_1) und (O_2) für die Halbordnung \subseteq auf $\mathcal{P}(A)$?

Hinweis: Die Eigenschaften (A_1) , (M_1) und (M_2) werden im Rahmen anderer Übungsaufgaben (vgl. EX 1.5) gezeigt und müssen hier nicht nachgewiesen werden. Auch auf den Nachweis der Eigenschaft (A_2) dürfen Sie hier verzichten. Die Eigenschaft (D_2) folgt sofort aus (M_1) und (D_1) .

Bemerkung: Hat A mindestens zwei Elemente, dann gibt es Mengen $X, Y \in \mathcal{P}(A)$ mit $X \neq \emptyset = 0_{\mathcal{P}(A)}$ und $Y \neq \emptyset = 0_{\mathcal{P}(A)}$ sowie $X \odot Y = X \cap Y = \emptyset = 0_{\mathcal{P}(A)}$. Der Ring $(\mathcal{P}(A), \triangle, \cap)$ ist dann also nicht nullteilerfrei.

- **B** Aufgabe 6.2: (Geordnete, kommutative, unitäre Ringe, 2+1+1+1+1 Punkte) Sei $(R, \oplus, \odot, \preceq)$ geordneter, kommutativer, unitärer Ring. Zeigen Sie, dass für alle $x, y, z, w \in R$ gilt:
 - (a) Ist $x \leq y$ und $z \leq w$, dann ist $x \oplus z \leq y \oplus w$.
 - (b) Genau dann ist $0_R \leq x$, wenn $\ominus x \leq 0_R$.
 - (c) Ist $x \leq y$, dann ist $\ominus y \leq \ominus x$.
 - (d) $0_R \leq x \odot x$.
 - (e) $0_R \le 1_R$.

Hinweis: Sie können zum Beweis die Eigenschaften 1.3.2 (A_1) – (A_4) , (M_1) – (M_3) , (D_1) , (D_2) , (O_1) und (O_2) sowie die Aussagen 1.3.4 (a) – (d), 1.3.5 (a) – (d) und 1.3.6 (a), (e) – (l) verwenden.

- (B) Aufgabe 6.3: (Binominalkoeffizienten, 2+4 Punkte)
 - (a) Zeigen Sie durch vollständige Induktion: Für jedes $n \in \mathbb{N}_0$ und jedes $k \in \{0, 1, ..., n\}$ ist n! durch k!(n-k)! teilbar.
 - (b) Für $n \in \mathbb{N}_0$ und $k \in \{0, 1, ..., n\}$ ist der Binominalkoeffizient definiert als

$$\binom{n}{k} := \frac{n!}{k!(n-k)!} \in \mathbb{N}.$$

Zeigen Sie für $n \in \mathbb{N}$ die folgenden Rechenregeln:

(i)
$$\binom{n}{k} = \binom{n}{n-k}$$
, $k = 0, 1, \dots, n$, (ii) $\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$, $k = 1, 2, \dots, n$.

Hinweis: Nutzen Sie für Teil (a) die Darstellung (n+1)! = (n+1-k)n! + kn!.

Aufgabe 6.4: (Binomische Formel)

Sei (F, \oplus, \odot) ein Körper. Zeigen Sie durch vollständige Induktion (nach n):

$$(x \oplus y)^n = \bigoplus_{k=0}^n \binom{n}{k} \cdot x^{n-k} \odot y^k, \qquad x, y \in F, \ n \in \mathbb{N}_0.$$

Aufgabe 6.5: (Minimum und Maximum)

Sei A eine Menge, sei \leq eine Ordnung auf A und sei $B \subseteq A$ eine Menge mit $n \in \mathbb{N}$ Elementen. Zeigen Sie, dass $\min(B)$ und $\max(B)$ existieren.

Hinweis: Argumentieren Sie durch vollständige Induktion nach n.