

Darstellungen endlicher Gruppen – Blatt 2

Abgabe der Lösungen bis zum 25.04.2025 in der Übungsstunde

Aufgaben 2.1 und 2.2 sind schriftlich zu bearbeiten. Alle weiteren Informationen zu der Vorlesung finden Sie auf

http://reh.math.uni-duesseldorf.de/~internet/DarstEndlGruppen_SS25/.

Definition. Eine Darstellung $\varrho: G \to \mathrm{GL}(V)$ einer Gruppe G auf einem Vektrorraum V heißt treu, falls $\mathrm{Kern}(\varrho) = 1$ ist.

Aufgabe 2.1 (4 Punkte)

Sei $G=\langle a,b\mid a^6=b^2=1,\,b^{-1}ab=a^{-1}\rangle$ eine Diedergruppe der Ordnung 12. Seien

$$A = \begin{pmatrix} e^{\pi i/3} & 0 \\ 0 & e^{-\pi i/3} \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \in \mathrm{GL}_2(\mathbb{C}).$$

- (a) Zeigen Sie: Durch die Vorgaben $(a\varrho_1, b\varrho_1) = (A, B)$, $(a\varrho_2, b\varrho_2) = (A^3, -B)$, $(a\varrho_3, b\varrho_3) = (-A, B)$, $(a\varrho_4, b\varrho_4) = (C, D)$ werden Darstellungen $\varrho_1, \ldots, \varrho_4$ von G auf $V = \mathbb{C}^2$ festgelegt.
- (b) Welche dieser Darstellungen sind treu, welche sind irreduzibel? Welche Paare von Darstellungen sind isomorph zueinander? Begründen Sie Ihre Antwort.

Aufgabe 2.2 (4 Punkte)

Sei G eine endliche Gruppe, und $\varrho: G \to \mathrm{GL}_2(\mathbb{C})$ eine Darstellung über dem Körper \mathbb{C} .

- (a) Zeigen Sie: Gibt es $g, h \in G$ mit $(g\varrho)(h\varrho) \neq (h\varrho)(g\varrho)$, so ist ϱ irreduzibel.
- (b) Gilt die Umkehrung? Begründen Sie Ihre Antwort.

Aufgabe 2.3

Die Eigenschaften einer Darstellung, "treu" (hinreichend groß) bzw. "irreduzibel" (vergleichsweise klein) zu sein, konkurrieren gewissermaßen miteinander. Fallen Ihnen notwendige oder hinreichende Bedingungen ein, unter denen eine endliche Gruppe G eine treue irreduzible Darstellung über den komplexen Zahlen besitzt?¹

Aufgabe 2.4

Sei G eine Gruppe, und seien (π, V) , (ϱ, W) endlich-dimensionale Darstellungen von G über einem Körper K. Seien e_1, \ldots, e_m und f_1, \ldots, f_n Basen von V und W.

Begründen Sie (ausführlich): Es gibt genau eine Darstellung σ von G auf $V\otimes_K W$ mit der Eigenschaft

$$(e_i \otimes f_j)(g\sigma) = e_i(g\pi) \otimes f_j(g\varrho)$$
 für $1 \le i \le m, \ 1 \le j \le n \text{ und } g \in G.$

Weiter erfüllt diese für alle elementaren Tensoren $v \otimes w$ und $g \in G$:

$$(v \otimes w)(g\sigma) = v(g\pi) \otimes w(g\varrho).$$

Hinweis. Definieren Sie zunächst σ als Abbildung $G \to \operatorname{End}(V \otimes_K W)$, in eindeutiger Weise. Prüfen Sie sodann die Gleichung für elementare Tensoren.

Bemerkung. Die Darstellung σ ist das in der Vorlesung ohne weitere Ausführungen vorgestellte Tensorprodukt $\pi \otimes \varrho$.

¹Vollständig charakterisiert wurden derartige Gruppen unter anderem von K. Shoda in J. Fac. Sci. Imp. Univ. Tokyo 2 (1930) und von W. Gaschütz in Math. Nachr. 12 (1954).