

Darstellungen endlicher Gruppen – Blatt 9

Abgabe der Lösungen bis zum 13.06.2025 in der Übungsstunde

Aufgabe 9.1 ist schriftlich zu bearbeiten. Alle weiteren Informationen zu der Vorlesung finden Sie auf

http://reh.math.uni-duesseldorf.de/~internet/DarstEndlGruppen_SS25/.

Aufgabe 9.1 (8 Punkte)

Ziel dieser Aufgabe ist unter anderem die Bestimmung der erweiterten Charaktertafel der Gruppe G = Alt(5). Als bekannt voraussetzen dürfen Sie vom Aufgabenblatt 7 her: Die Gruppe G hat fünf Konjugationsklassen, und die Grade der fünf irreduziblen Darstellungen von G sind:

$$\vartheta_1(1) = 1$$
, $\vartheta_2(1) = 3$, $\vartheta_3(1) = 3$, $\vartheta_4(1) = 4$, $\vartheta_5(1) = 5$.

- (a) Wählen Sie ein geeignetes Vertretersystem g_1, \ldots, g_5 für die Konjugationsklassen von G und geben Sie $|C_G(g_i)|$ für $1 \le i \le 5$ an. Verifizieren Sie: Jedes Element $g \in G$ ist reell, d. h. konjugiert in G zu seinem Inversen g^{-1} .
- (b) Bestimmen Sie ϑ_1 und ϑ_4 , d. h. die entsprechenden Zeilen der Charaktertafel. Hinweis. Betrachten Sie die natürliche Permutationsdarstellung, um einen Charakter vom Grad 5 zu erhalten. Zerlegen Sie diesen dann in irreduzible Bestandteile.
- (c) Bestimmen Sie die Charaktere $(\vartheta_4)_S$, $(\vartheta_4)_A$ für die zweite symmetrische Potenz und die zweite alternierende Potenz der Darstellung zu ϑ_4 . Zerlegen Sie diese als Summen von irreduziblen Charakteren und bestimmen Sie so insbesondere ϑ_5 .

Hinweis. Aus Aufgabe 3.1 sind für einen Charakter χ einer endlichen Gruppe G allgemein bekannt: $\chi_{\rm S}(g) = (\chi(g)^2 + \chi(g^2))/2$ und $\chi_{\rm A}(g) = (\chi(g)^2 - \chi(g^2))/2$ für alle $g \in G$.

- (d) In natürlicher Weise ist H = Alt(4) eine Untergruppe von G. Zeigen Sie: Es existiert ein Charakter ψ von H mit $\psi^G = \vartheta_5$. Können die fehlenden irreduziblen Charaktere ϑ_3, ϑ_4 ähnlich als induzierte Charaktere einer geeigneten Untergruppe konstruiert werden?
- (e) Verwenden Sie die Spaltenorthogonalitätsrelationen, um ϑ_3, ϑ_4 und damit die vollständige Charaktertafel von G zu bestimmen.
- (f) Verifizieren Sie anhand der Charaktertafel, daß G eine einfache Gruppe ist.

Aufgabe 9.2

Sei G eine endliche Gruppe und $H \leq G$. Seien $\vartheta_1, \ldots, \vartheta_k$ die verschiedenen irreduziblen Charaktere von G, und sei ψ ein irreduzibler Charakter von H. Weiter sei $\psi^G = \sum_{i=1}^k m_i \vartheta_i$, mit Koeffizienten $m_i \geq 0$, die Zerlegung des induzierten Cha-

Weiter sei $\psi^G = \sum_{i=1}^k m_i \vartheta_i$, mit Koeffizienten $m_i \ge 0$, die Zerlegung des induzierten Charakters ψ^G in irreduzible Komponenten. Zeigen Sie:

$$\sum_{i=1}^k m_i^2 \le |G:H|.$$

Unter welchen Umständen gilt Gleichheit?

Hinweis. Verwenden Sie das Frobeniussche Reziprozitätsgesetz.

Bitte wenden!

Aufgabe 9.3

Seien $H \leq K \leq G$ Gruppen, und seien $\sigma, \sigma_1, \sigma_2$ Darstellungen von H sowie $\varrho, \varrho_1, \varrho_2$ Darstellungen von G.

(a) Erläutern bzw. zeigen Sie die folgenden Aussagen aus Abschnitt 5 der Vorlesung, die dort ohne Beweis mitgeteilt wurden:

$$\operatorname{res}_H^G(\varrho_1 \oplus \varrho_2) \cong \operatorname{res}_H^G(\varrho_1) \oplus \operatorname{res}_H^G(\varrho_2)$$
 und $\operatorname{res}_H^K(\operatorname{res}_K^G(\varrho)) \cong \operatorname{res}_H^G(\varrho)$,

$$\operatorname{ind}_{H}^{G}(\sigma_{1} \oplus \sigma_{2}) \cong \operatorname{ind}_{H}^{G}(\sigma_{1}) \oplus \operatorname{ind}_{H}^{G}(\sigma_{2}) \quad \text{und} \quad \operatorname{ind}_{K}^{G}(\operatorname{ind}_{H}^{K}(\sigma)) \cong \operatorname{ind}_{H}^{G}(\sigma).$$

Hinweis. Die Behauptungen zur Restriktion sehen Sie direkt ein. Für die Aussagen zu induzierten Darstellungen verwenden Sie deren allgemeine Definition aus Abschnitt 5. Für die letzte Behauptung hilft es, konkret Vertretersysteme $(s_i)_{i\in I}$ für die Nebenklassen von H in K und $(t_j)_{j\in J}$ für die Nebenklassen von K in G zu wählen.

(b) Seien nun $H \leq K \leq G$ endlich und betrachten Sie endlich-dimensionale Darstellungen von H bzw. G über \mathbb{C} . Formulieren und begründen Sie die Aussagen in (a) mit Hilfe der zugeordneten Charaktere.

Hinweis. Verwenden Sie die Formel für induzierte Charaktere aus Abschnitt 5.