Prof. Dr. Benjamin Klopsch Doris Grothusmann, M.Sc. Sommersemester 2025

Darstellungen endlicher Gruppen – Blatt 10

Abgabe der Lösungen bis zum 20.06.2025 in der Übungsstunde

Aufgabe 10.1 ist schriftlich zu bearbeiten. Alle weiteren Informationen zu der Vorlesung finden Sie auf

http://reh.math.uni-duesseldorf.de/~internet/DarstEndlGruppen_SS25/.

Aufgabe 10.1 (8 Punkte)

In dieser Aufgabe wird die erweiterten Charaktertafel der Gruppe G = Sym(6) bestimmt.

- (a) Bestimmen Sie ein geeignetes Vertretersystem g_1, \ldots, g_{11} für die Konjugationsklassen von G und berechnen Sie $|C_G(g_i)|$ für $1 \le i \le 11$. Verifizieren Sie: Jedes Element $g \in G$ ist reell, d. h. konjugiert in G zu seinem Inversen g^{-1} .
- (b) Zeigen Sie: G hat genau zwei lineare Charaktere, ϑ_1 und ϑ_2 , und berechnen Sie die entsprechenden Zeilen der Charaktertafel.
- (c) Bestimmen Sie irreduzible Charaktere ϑ_3 und ϑ_4 mit $\vartheta_3(1) = \vartheta_4(1) = 5$.

Hinweis. Betrachten Sie die natürliche Permutationsdarstellung, um einen Charakter vom Grad 6 zu erhalten. Zerlegen Sie diesen dann in irreduzible Bestandteile, um ϑ_3 zu erhalten. Nutzen Sie, daß Sie bereits die linearen Charaktere kennen, um ϑ_4 zu finden.

(d) Bestimmen Sie die Charaktere $(\vartheta_3)_S$, $(\vartheta_3)_A$ für die zweite symmetrische Potenz und die zweite alternierende Potenz der Darstellung zu ϑ_3 . Zerlegen Sie diese als Summen von irreduziblen Charakteren, und bestimmen Sie so weitere irreduzible Charaktere ϑ_7 , ϑ_8 , ϑ_9 , ϑ_{10} mit $\vartheta_7(1) = \vartheta_8(1) = 9$ und $\vartheta_9(1) = \vartheta_{10}(1) = 10$.

Hinweis. Verwenden Sie die gleichen Formeln wie in Aufgabe 9.1.

- (e) In natürlicher Weise ist H = Alt(5) eine Untergruppe von G. Bestimmen Sie für einen Charakter¹ ψ von H mit $\psi(1) = 3$ den induzierten Charakter ψ^G . Zerlegen Sie ψ^G als Summe von irreduziblen Charakteren und finden Sie so $\vartheta_{11} \in \text{Irr}(G)$ mit $\vartheta_{11}(1) = 16$.
- (f) Verwenden Sie die Spaltenorthogonalitätsrelationen, um für die beiden verbleibenden irreduziblen Charaktere $\vartheta_5(1) = \vartheta_6(1) = 5$ zu folgern sowie anschließend ϑ_5, ϑ_6 und damit die vollständige Charaktertafel von G zu bestimmen.

Aufgabe 10.2

Sei G eine endliche Gruppe mit irreduziblen Charakteren $\vartheta_1, \ldots, \vartheta_k$ und Konjugationsklassenvertretern g_1, \ldots, g_k . Zeigen Sie: Für jedes $i \in \{1, \ldots, k\}$ ist die ite "Zeilensumme" der Charaktertafel von G eine ganzrationale Zahl:

$$\sum_{j=1}^k \vartheta_i(g_j) \in \mathbb{Z}.$$

Hinweis. Verwenden Sie den Permutationscharakter, der zu der Konjugationswirkung von G auf sich gehört. – Was können Sie alsdann genauer über die Summe aussagen?

Bitte wenden!

¹Die Charaktertafel der Gruppe Alt(5) finden Sie auch umseitig im Hinweis zu Aufgabe 10.3.

Aufgabe 10.3

- (a) Sei G eine endliche Gruppe und $H \leq G$ mit |G:H| = 2. Sei $\psi \in Irr(H)$ mit $\psi^G \in Irr(G)$. Folgern Sie: Es gibt genau einen weiteren Charakter $\varphi \in Irr(H)$, $\varphi \neq \psi$, mit $\varphi^G = \psi^G$.
- (b) Seien nun speziell $G = \operatorname{Sym}(5)$ und $H = \operatorname{Alt}(5)$. Bestimmen Sie alle $\psi \in \operatorname{Irr}(H)$ mit $\psi^G \in \operatorname{Irr}(G)$.

Hinweis. Die Charaktertafel von H = Alt(5) kennen Sie aus Aufgabe 9.1. Sie hat die folgende Gestalt.

$\overline{h_i}$	(1)	(123)	(12)(34)	(12345)	(13452)
$ C_H(h_i) $	60	3	4	5	5
$\overline{\psi_1}$	1	1	1	1	1
ψ_2	3	0	-1	$\frac{1}{2}(1+\sqrt{5})$	$\frac{1}{2}(1-\sqrt{5})$
ψ_3	3	0	-1	$\frac{1}{2}(1-\sqrt{5})$	$\frac{1}{2}(1+\sqrt{5})$
ψ_4	4	1	0	-1	-1
ψ_5	5	-1	1	0	0