

Darstellungen endlicher Gruppen – Blatt 11

Abgabe der Lösungen bis zum 27.06.2025 in der Übungsstunde

Aufgaben 11.1 und 11.3 sind schriftlich zu bearbeiten. Alle weiteren Informationen zu der Vorlesung finden Sie auf

http://reh.math.uni-duesseldorf.de/~internet/DarstEndlGruppen_SS25/.

Aufgabe 11.1 (4 Punkte)

Sei G eine endliche Gruppe, und seinen $H \leq G$ und $N \leq G$.

(a) Zeigen Sie: Für den induzierten Charakter χ^G eines Charakters χ von H gilt stets

$$\operatorname{Kern}(\chi^G) = \bigcap \{ \operatorname{Kern}(\chi)^g \mid g \in G \}.$$

(b) Sei $\vartheta \in Irr(G)$ mit $\langle \vartheta_N, \mathbb{1}_N \rangle_N \neq 0$. Zeigen Sie: $N \leq Kern(\vartheta)$. Hinweis. Sie können (a) verwenden.

Aufgabe 11.2

Finden Sie heraus, welche irreduziblen Charaktere der Gruppe G = Sym(4) als induzierte Charaktere von einer echten Untergruppe gewonnen werden können und bestimmen Sie für diese jeweils eine Darstellung als induzierter Charakter.

Hinweis. Die Charaktertafel von G = Sym(4) kennen Sie bereits aus der Vorlesung:

g_i	(1)	(12)	(123)	(12)(34)	(1234)
$ C_G(g_i) $	24	4	3	8	4
θ_1	1	1	1	1	1
ϑ_2	1	-1	1	1	-1
ϑ_3	2	0	-1	2	0
$artheta_4$	3	1	0	-1	-1
θ_5	3	-1	0	-1	1

Aufgabe 11.3 (4 Punkte)

Sei G eine endliche Gruppe und sei \mathcal{H} die Menge aller zyklischen Untergruppen von G.

(a) Erklären Sie mit Hilfe der Resultate aus der Vorlesung:

$$I(G) = \{ d \in \mathbb{Z} \mid d\mathbb{1}_G = \sum_{H \in \mathcal{H}} a_H(\mathbb{1}_H)^G \text{ mit Koeffizienten } a_H \in \mathbb{Z} \}$$

ist ein von 0 verschiedenes Ideal von \mathbb{Z} .

(b) Der Artinsche Exponent der Gruppe G ist diejenige Zahl $a(G) \in \mathbb{N}$, für die $I(G) = a(G)\mathbb{Z}$ gilt; siehe (a).

Berechnen Sie den Artinschen Exponenten für die folgenden Gruppen:

$$G \cong C_m$$
 für $m \in \mathbb{N}$, $G \cong C_2^m$ für $m \in \mathbb{N}$, $G \cong D_8$, $G \cong \operatorname{Sym}(3)$.