

Darstellungen endlicher Gruppen – Blatt 1

Abgabe der Lösungen bis zum 27.10.2022 in der Übung

Aufgaben 1.1 und 1.2 sind schriftlich zu bearbeiten; Aufgaben 1.3 und 1.4 dienen als mündliche Zusatzaufgaben. Alle weiteren Informationen zu der Vorlesung finden Sie auf

http://reh.math.uni-duesseldorf.de/~internet/DarstEndlGruppen_WS2223/.

Aufgabe 1.1 (4 Punkte)

Sei G eine Gruppe, und K ein Körper. Seien (π, V_{π}) und (ϱ, V_{ϱ}) endlich-dimensionale Darstellungen von G über K, und weiter sei $n = \dim(\pi) = \dim(\varrho)$.

Erläutern Sie: Es gilt $\pi \cong \rho$ genau dann, wenn sich bzgl. geeigneter Basen in beiden Fällen ein und dieselbe Darstellung in Matrizenform $G \to GL_n(K)$ ergibt.

Aufgabe 1.2 (4 Punkte)

Sei $G \leq \operatorname{Sym}(6)$ eine Diedergruppe der Ordnung 12. Sei $\varrho: G \to \operatorname{GL}_6(K)$ die zugehörige Darstellung (mittels Permutationsmatrizen) auf dem Standardzeilenvektorraum K^6 . Geben Sie in einer Tabelle explizit alle Elemente $g \in G$ (in Zykelschreibweise) und ihre Bilder $g\varrho \in \operatorname{GL}_n(K)$ an.

Aufgabe 1.3

Sei G eine endliche Gruppe, und K ein Körper. Zeigen Sie: Eine Darstellung (ϱ, V) von G ist genau dann die reguläre Darstellung, wenn es ein $v \in V$ gibt dergestalt, daß die Familie $(v.(g\varrho))_{g\in G}$ eine Basis für den K-Vektorraum V bildet.

Aufgabe 1.4

Sei $G = \langle x \rangle \cong C_5$ eine zyklische Gruppe der Ordnung 5. Betrachten Sie die reguläre Darstellung $\varrho: G \to \mathrm{GL}_5(K)$ über $K = \mathbb{R}$ bzw. $K = \mathbb{C}$, die durch

$$e_1^x = e_1.(x\varrho) = e_2, \quad e_2^x = e_2.(x\varrho) = e_3, \quad \dots, \quad e_4^x = e_4.(x\varrho) = e_5, \quad e_5^x = e_5.(x\varrho) = e_1,$$

gegeben ist, wobei e_1, \ldots, e_5 die Standardbasis des Vektorraums K^5 bezeichne. Beschreiben Sie jeweils alle Teildarstellungen von ϱ .

(*Hinweis*. Verwenden Sie Ihre Kenntnisse zur linearen Algebra.)

Zusatz. Sei $G = \langle x \rangle \cong C_{\infty}$ eine unendliche zyklische Gruppe. Betrachten Sie die reguläre Darstellung $\varrho: G \to \mathrm{GL}(V)$ über \mathbb{C} , wobei der (abzählbar) unendlich-dimensionale Vektorraum V die Basis $(e_i)_{i\in\mathbb{Z}}$ habe und

$$e_i^x = e_i.(x\varrho) = e_{i+1}$$
 für $i \in \mathbb{Z}$

gelte. Welche Teildarstellungen finden Sie? Gibt es einen $(G\varrho)$ -invarianten Untervektorraum $U \neq \{0\}$, der außer $\{0\}$ und U keine weiteren $(G\varrho)$ -invarianten Unterräume besitzt?