An introduction to *p*-modular representations of *p*-adic groups

Ramla ABDELLATIF

I AMFA - IMAR

November 13th, 2025

Part 1: Warm-up

Introducing the main actors of the play

Local fields and p-adic numbers (I)

Recall: \mathbb{R} is the completion of \mathbb{Q} for the usual absolute value $|\cdot|_{\infty}$, which is Archimedean.

Theorem (Ostrowski I, 1916)

Any (non-trivial) Archimedean absolute value on $\mathbb Q$ is equivalent to $|\ |_{\infty}.$

Question: What about non-Archimedean absolute values?

Local fields and p-adic numbers (II)

Definition: Let p be a prime integer.

For any non-zero integer x, set $v_p(x) := \max\{n \in \mathbb{Z}_{\geq 0} \mid p^n \text{ divides } x\}.$

Extend v_p to $\mathbb Q$ by setting $v_p(0):=\infty$ and $v_p(a/b):=v_p(a)-v_p(b)$.

Exercise: $|.|_p : x \mapsto p^{-\nu_p(x)}$ is a non-Archimedean absolute value on \mathbb{Q} .

Theorem (Ostrowski II, 1916)

Any non-trivial absolute value on \mathbb{Q} is equivalent to $|\cdot|_{\star}$ for a unique $\star \in \mathcal{P} \cup \{\infty\}$, where \mathcal{P} denotes the set of prime integers.

Definition: \mathbb{Q}_p is the completion of \mathbb{Q} for the *p*-adic absolute value $|.|_p$. This is the field of *p*-adic numbers.

4 / 29

Local fields and *p*-adic numbers (II)

Some surprising and useful fun facts about *p*-adic numbers:

(i) Set $\mathbb{Z}_p := \{ x \in \mathbb{Q}_p \mid v_p(x) \ge 0 \} = \{ x \in \mathbb{Q}_p \mid |x|_p \le 1 \}.$

It is a Discrete Valuation Ring (hence a Principal Ideal Domain) and:

$$\forall\ n\in\mathbb{Z}_{\geq 0},\ \mathbb{Z}_p/p^n\mathbb{Z}_p\simeq\mathbb{Z}/p^n\mathbb{Z}\ .$$

In particular, it is a local ring with finite residue field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.

- (ii) Any finite index subgroup of \mathbb{Q}_p^{\times} is open and closed.
- (iii) \mathbb{Z}_p is a compact topological space, and the completion of $(\mathbb{Z},|.|_p)$.
- (iv) \mathbb{Q}_p is locally compact (but non compact) and totally disconnected.
- (v) A series of p-adic numbers is convergent iff its general term converges to 0.

5 / 29

Local fields and p-adic numbers (III)

Definition: A local field is a field endowed with a **discrete** valuation for which it is complete and with **finite** residue field.

Exercise: For any prime integer p, \mathbb{Q}_p is a local field.

Note : \mathbb{Q}_p has many finite field extensions or arbitrarily high degree.

Theorem

Any local field of characteristic 0 is a finite extension of \mathbb{Q}_p for a unique prime integer p.

Note: In characteristic p, local fields are Laurent series with coefficients in finite extensions of \mathbb{F}_p .

November 13th, 2025

Absolute Galois group and Weil group of a local field (I)

Let F/\mathbb{Q}_p be a finite extension and \overline{F} be a separable closure of F.

We let $G_F := Gal(\overline{F}/F)$ be the absolute Galois group of F.

Let k be the residue field of F.

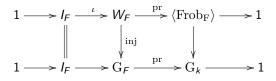
Then the residue field of \overline{F} is an algebraic closure \overline{k} of k and we have a natural projection homomorphism

$$\operatorname{pr}: G_F \twoheadrightarrow \operatorname{Gal}(\overline{k}/k) \simeq \widehat{\mathbb{Z}}$$
.

The Weil group of F is the preimage $W_F := \operatorname{pr}^{-1}(\langle \operatorname{Frob}_F \rangle)$ of a given topological generator of $\operatorname{Gal}(\overline{k}/k)$.

Absolute Galois group and Weil group of a local field (II)

The Weil group of F is the preimage $W_F := \operatorname{pr}^{-1}(\langle \operatorname{Frob}_F \rangle)$ of a given topological generator of $\operatorname{Gal}(\overline{k}/k)$.



Warning! The topology of W_F is **NOT** the topology induced by G_F ! **BUT** the canonical injection inj is continuous with dense image.

Note : For now, can forget W_F and consider the full Galois group G_F

Basic vocabulary of representation theory

Let G be a locally profinite topological group (such as $GL_n(F)$ for $n \ge 1$).

A representation of G over a field E is a pair (π, V) , where V is an E-vector space and $\pi: G \to \operatorname{Aut}_E(V)$ is a group action of G on V.

Such a representation is:

- * irreducible when V admits exactly two G-stable subvectorspaces (namely $\{0\}$ and V);
- \star smooth when any element of V has open stabilizer in G (under π);
- ★ admissible when $V^H := \{v \in V \mid \forall h \in H, \pi(h)(v) = v\}$ is finite-dimensional over E for any open compact subgroup H of G.

Notes:

- \star One often imposes *smoothness* in the definition of admissibility.
- * As we will see later, the choice of *E* really impacts the relations between these notions.

Part 2: Motivation

Why do we care about p-modular representations?

From local class field theory to Langlands correspondences

Local class field theory : Given a finite extension F/\mathbb{Q}_p , Artin reciprocity map induces a group homomorphism $F^{\times} \simeq W_F^{\mathrm{ab}}$.

Such an isomorphism naturally induces a bijection of the following form:

$$\left\{\begin{array}{c} \text{continuous} \\ \text{group homomorphisms} \\ W_F \to \mathbb{C}^\times \end{array}\right\} \overset{\sim}{\longleftrightarrow} \left\{\begin{array}{c} \text{smooth} \\ \text{group homomorphisms} \\ F^\times \to \mathbb{C}^\times \end{array}\right\}$$

Question (Langlands, 1967) : Can we have a higher-dimensional (non abelian) analogue of this natural bijection ?

From local class field theory to Langlands correspondences

Conjecture (Langlands 1967; proven by Harris-Taylor (2001), Henniart (2002), Scholze (2013))

For any integer $n \ge 1$, there is a natural bijection of the following form:

Further conjectures and results:

Extension to other groups than GL_n , using L-groups.

Examples of ℓ -adic and ℓ -modular representations

Let $\mathcal E$ be an elliptic curve defined over $\mathbb Q$. (Consider an equation of the form $y^2+axy+by=x^3+\alpha x^2+\beta x+\gamma$ with a chosen point at infinity.)

For any $n \in \mathbb{Z}_{\geq 1}$ and any prime ℓ , $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on the group $\mathcal{E}[\ell^n]$ of ℓ -torsion points.

- * For n=1, we get an ℓ -modular representation of $G_{\mathbb{Q}_p}$, hence of $G_{\mathbb{Q}_p}$ for any prime p (via decomposition groups).
- * Multiplication by ℓ defines transition maps $\mathcal{E}[\ell^{n+1}] \to \mathcal{E}[\ell^n]$, so we can define the Tate module $T_\ell(\mathcal{E}) := \lim_{\longleftarrow} \mathcal{E}[\ell^n]$ of \mathcal{E} . This \mathbb{Z}_ℓ -module defines an ℓ -adic representation $V_\ell(\mathcal{E}) := T_\ell(\mathcal{E}) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell$ of $G_\mathbb{Q}$.

Such representations are involved in the proof of Shimura-Taniyama-Weil conjecture (Wiles and al. 1994-2001), which implies Fermat's Last Theorem (Frey 1985, Ribet 1987, Wiles and Taylor-Wiles, 1994-1995).

13 / 29

When non-complex things get more complex... (I)

Following Langlands philosophy, there should exist matching *correspondences* of the following form $(p, \ell \text{ arbitrary primes})$:

$$\left\{ \begin{array}{l} \text{geometric 2-dimensional} \\ \ell\text{-adic representations} \\ \text{of } G_{\mathbb{Q}_p} \text{ over } \overline{\mathbb{Q}}_\ell \end{array} \right\} \quad \stackrel{??}{\longleftrightarrow} \quad \left\{ \begin{array}{l} \text{some smooth} \\ \text{representations of} \\ \operatorname{GL}_2(\mathbb{Q}_p) \text{ over } \overline{\mathbb{Q}}_\ell \end{array} \right\} \\ \left\{ \begin{array}{l} \text{geometric 2-dimensional} \\ \ell\text{-modular representations} \\ \text{of } G_{\mathbb{Q}_p} \text{ over } \overline{\mathbb{F}}_\ell \end{array} \right\} \quad \stackrel{??}{\longleftrightarrow} \quad \left\{ \begin{array}{l} \text{some smooth} \\ \text{representations of} \\ \operatorname{GL}_2(\mathbb{Q}_p) \text{ over } \overline{\mathbb{F}}_\ell \end{array} \right\}$$

that should

- \star be *natural* enough (w.r.t. L-functions, ε -factors, functoriality...);
- \star make sense and hold for other reductive groups than GL_n (conditions on the image of the geometric representation).

Question: How to cook up such correspondences ?

When non-complex things get more complex... (II)

Statement of the problem:

- * Describe smooth representations of $\mathrm{GL}_n(F)$ over \mathbb{F}_ℓ , where F is a finite extension of \mathbb{Q}_p (More generally, of $\mathcal{G}(F)$ for \mathcal{G} a connected reductive group over F)
- \star Connect them to the Galois side in a « natural way »

When $\ell \neq p$, many tools from the $\mathbb C$ world transfer more or less easily.

- \rightsquigarrow Vignéras 1996 for $\mathrm{GL}_n(F)$ in both ℓ -modular and ℓ -adic settings;
- \rightsquigarrow Minguez-Sécherre 2002 for $\mathrm{GL}_n(D)$, with D central division algebra over F, in the ℓ -modular setting;
- \leadsto Ongoing works of many authors for other groups in the ℓ -modular setting, a little less in the ℓ -adic one.

Take $\ell = p...$ and everything collapses!

When $\ell = p$:

- $\star p$ is not invertible in $\overline{\mathbb{F}}_p$, so forget averaging and counting arguments
- * There is no Haar measure over $\mathrm{GL}_n(F)$ with values in $\overline{\mathbb{F}}_p$, so forget most of harmonic analysis tools... hence of complex methods!
- \star Any smooth representation of a pro-p-group is of level 0:

Lemma (Key lemma – Serre 1970's, Barthel-Livné 1994)

Let \mathcal{P} be a pro-p-group and (σ, W) be a smooth non-zero representation of \mathcal{P} over E. Then $W^{\mathcal{P}} := \{ w \in W \mid \forall \ g \in \mathcal{P}, \ \sigma(g)(w) = w \} \neq \{ 0 \}.$

When ℓ becomes p: what is known so far? (Upshot I)

Full classifications for only 3 groups so far

```
★ Barthel-Livné 1994-95 + Breuil 2001 : GL<sub>2</sub>(ℚ<sub>p</sub>)
→ associated p-modular LLC (Breuil, Colmez, Paškūnas...)
→ associated p-adic LLC (Berger, Colmez, Dospinescu, Paškūnas...)
★ A. 2010/2011 : SL<sub>2</sub>(ℚ<sub>p</sub>)
→ First instance of p-modular LLC with packets
→ p-adic LLC still in progress (A., Sherman, Ban-Strauch...)
★ Kozioł 2014 : U(1,1)(ℚ<sub>p²</sub>/ℚ<sub>p</sub>)
→ First instance of p-modular LLC for a non-split group
→ p-adic LLC also in progress (A.-David-Romano-Wiersema...)
```

When ℓ becomes p: what is known so far? (Upshot II)

Some partial results... mostly negative, and mostly about GL_2

- * Abe-Henniart-Herzig-Vignéras 2014: Classification of irreducible admissible smooth representations up to the supersingular ones
- ⋆ Irreducible smooth does not imply admissible (Le 2019)
- * Restriction to open compact subgroups is not semisimple (A.-Morra 2012 for $SL_2(\mathbb{Q}_p)$)
- ★ Restriction to minimal parabolic subgroups brings control (A.-Hauseux 2019 in rank 1)
- \star Many new conjectures in the $\mathrm{GL}_n(\mathbb{Q}_p)$ case (Breuil et al., 2000-20..)

Part 3 : Some statements
Classifying p-modular
representations
of (non) reductive
p-adic groups

p-modular representations of p-adic groups: the setting (I)

- ⋆ p: prime integer
- * F: non-Archimedean local field with finite residue field k of char. p $(F/\mathbb{Q}_p \text{ finite extension or } F = \mathbb{F}_{p^f}((t)) \text{ with } f \in \mathbb{Z}_{\geq 1})$
- * \mathcal{G} : connected reductive group defined over F (e.g. SL_2 or GL_2) $\leadsto \operatorname{G} := \mathcal{G}(F)$ is a topological group (« p-adic group » if char F = 0)
- \star E: algebraically closed field of characteristic p that contains k

Question : What can we say about isomorphism classes of irreducible (admissible) smooth representations of G over E?

p-modular representations of p-adic groups: the setting (II)

Question : What can we say about isomorphism classes of irreducible (admissible) smooth representations of G over E?

Process in two times:

- ★ Step 1: Study subquotients of parabolically induced representations
 → non-supercuspidal representations
- * "Step" 2: Try to catch supercuspidal representations by other ways
 Note: Such representations always exist (Herzig-Kozioł-Vignéras 19)

Inducing representations of parabolic subgroups

 \mathcal{B} : parabolic subgroup of \mathcal{G} with Levi decomposition $\mathcal{B}=\mathcal{M}\mathcal{U}$ **Example:** $\mathcal{B}=$ upper-triangular matrices in \mathcal{G} $\mathcal{M}=$ diagonal matrices in \mathcal{G} .

 (σ,W) : irreducible admissible smooth representation of M over E **Example:** For $G=\operatorname{SL}_2$, we have $\mathcal{M}\simeq\mathbb{G}_m$, hence σ is a continuous group homomorphism $F^\times\to E^\times$.

One extends σ to a smooth representation of B trivial on U and set

$$\operatorname{Ind}_{B}^{G}(\sigma) := \left\{ \begin{array}{l} f: G \to W \mid \exists \ K_{f} \text{ open compact subgroup of } G \text{ s.t.} \\ \forall \ (mu, g, k) \in B \times G \times K_{f}, \ f(mugk) = \sigma(m)f(g) \end{array} \right\}$$

This defines a functor of parabolic induction that is a right adjoint to restriction to B. Irreducible smooth representations of G that are subquotient of such induced representations are called non supercuspidal.

22 / 29

(Non-)supercuspidal representations of p-adic groups

Theorem (A., 2011)

Assume that G is of semisimple F-rank 1.

- **1** $\operatorname{Ind}_{\mathcal{B}}^{\mathcal{G}}(\sigma)$ is irreducible iff σ does not extend to a smooth representation of G.
- **2** Otherwise, $\operatorname{Ind}_{B}^{G}(\sigma)$ is a non-split representation of G of length 2 and fits into the following short exact sequence:

$$1 \longrightarrow \sigma \longrightarrow \operatorname{Ind}_{B}^{G}(\sigma) \longrightarrow \operatorname{St}_{G} \otimes \sigma \longrightarrow 1$$
.

3 There is no non-trivial intertwinning between distinct subquotients of parabolically induced representations.

Example: For $\mathcal{G}=\mathrm{GL}_2$, the first condition means that σ does factor through det, and we obtain 3 disjoint families of isomorphism classes: principal series representations, special series representations, and characters (= one-dimensional representations).

Supercuspidal representations in the classical setting

Bushnell-Kutzko 1993, 1998: theory of types for complex representations

Idea 1 (Bernstein decomposition): Decompose the category of smooth representations of G into blocks indexed by pairs (M, σ) with M Levi factor and σ irreducible cuspidal representation of M.

Idea 2 (Definition of types): Let K be an open compact subgroup of G and η be an irreducible smooth representation of K.

A smooth complex representation ρ of G is of type type (K, η) iff ρ is a quotient of c-ind $_K^G(\eta)$. (The latter functor is defined as Ind with an extra assumption on the support of f.)

Motto: Compact induction gives (all) supercuspidal representations.

Supercuspidal representations in the modular setting

When $\ell \neq p$:

Can partially work out this strategy for ℓ -modular representations (Dat 1999, Sécherre-Minguez 2012, Lanard 2019, Cui 2023...)

When $\ell = p$:

There is not even a thing like Bernstein-like decomposition...

... but one can consider compact induction and see how do quotients look like: hopefully, they provide (all) supercuspidal representations.

 \leadsto For $\mathrm{SL}_2(\mathbb{Q}_p)$, we get a full classification of irreducible smooth p-modular representations :

- the trivial character 1;
- the Steinberg representation St;
- the representations of the principal series $\operatorname{Ind}_{\mathcal{B}}^{\mathcal{G}}(\chi)$ with $\chi \neq \mathbf{1}$;
- the *p* supercuspidal representations π_0, \ldots, π_{p-1} .

Supercuspidal representations in the p-modular setting (I)

 \mathcal{O}_F : the ring of integers of F (as \mathbb{Z}_p is for \mathbb{Q}_p).

 $K = \mathcal{G}(\mathcal{O}_F)$: a maximal open compact subgroup of G.

 (η, W) : irreducible smooth representation of K over E.

$$\mathcal{H}(G,K,\eta) := \operatorname{End}_{\mathcal{E}[G]}\left(\operatorname{c-ind}_K^G(\eta)\right)$$
 : spherical Hecke algebra

Theorem (Barthel-Livné 1994-1995 for GL_2 , A. 2011 for SL_2 and $\mathit{U}(2,1)$)

- **1** There exists $T_{\eta} \in \mathcal{H}(G, K, \eta)$ such that $\mathcal{H}(G, K, \eta) = C[T_{\eta}]$.
- 2 Let π be an irreducible smooth representation of G over E that admits a central character. Then:
 - π is a quotient of $\operatorname{Coker}(T_{\eta} \lambda \operatorname{Id})$ for some $\lambda \in E$ and η as above.
 - π is supercuspidal iff $\lambda=0$ in the previous statement.

Goal: Understand the structure of $\pi(\eta, \lambda) := \operatorname{Coker}(T_{\eta} - \lambda \operatorname{Id})$.

Classification of *p*-modular representations for $\mathrm{SL}_2(\mathbb{Q}_p)$

Theorem (A., 2010-2011)

- **1** Any irreducible smooth representation of G over $\overline{\mathbb{F}}_p$ is a quotient of some cokernel $\pi(\eta, \lambda)$.
- 2 If $\lambda \neq 0$ and $(\eta, \lambda) \neq (1, 1)$, then $\pi(r, \lambda)$ is isomorphic to a parabolically induced representation.
- **3** We have the following short exact sequence of $\overline{\mathbb{F}}_p[G]$ -modules :

$$0 \longrightarrow St \longrightarrow \pi(\mathbf{1},1) \longrightarrow \mathbf{1} \longrightarrow 0$$
.

4 We have the following non-split short exact sequence of $\overline{\mathbb{F}}_p[G]$ -modules for a unique $r \in \{0, \dots, p-1\}$:

$$0 \longrightarrow \pi_{p-1-r} \longrightarrow \pi(\eta,0) \longrightarrow \pi_r \longrightarrow 0.$$

(3) $\{\pi_r, 0 \le r \le p-1\}$ is a system of representatives of the isomorphism classes of supersingular representations of *G*.

What is next? (Or: towards the second talk of the day)

Beyond the reductive case : the metaplectic group $\widetilde{\operatorname{SL}}_2(F)$

- ⋆ Joint project with with S. Purkait (Institute of Science Tokyo)
- Done: Classification of Iwahori-Hecke simple modules and genuine non-supercuspidal representations + connection using Iwahori-typical components; structure of spherical Hecke algebras.
- Ongoing : Classification of genuine supercuspidal representations, variations on Langlands-Shimura correspondence $(F=\mathbb{Q}_p)$

This ends this talk... Are your ready for the next one?

Vielen Dank!

If you have any question, please feel free to ask!