Decomposition columns labelled by d-balanced partitions

Pavel Turek

University of Birmingham

November 14, 2025

joint work with David Hemmer, Bim Gustavsson and Stacey Law

Partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_t)$ of size n is a non-increasing sequence of positive integers, called *parts*, which add up to n.

Partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_t)$ of size n is a non-increasing sequence of positive integers, called parts, which add up to n. We can represent partition λ using its Young diagram

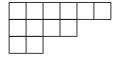


Figure: The Young diagram of (6,4,2), a partition of size 12.

Partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_t)$ of size n is a non-increasing sequence of positive integers, called parts, which add up to n. We can represent partition λ using its Young diagram

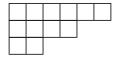


Figure: The Young diagram of (6,4,2), a partition of size 12.

We fix an integer e > 2.

Partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_t)$ of size n is a non-increasing sequence of positive integers, called parts, which add up to n. We can represent partition λ using its Young diagram

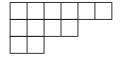


Figure: The Young diagram of (6,4,2), a partition of size 12.

We fix an integer e > 2. A partition is e-regular if it has no e (or more) equal parts.

Partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_t)$ of size n is a non-increasing sequence of positive integers, called parts, which add up to n. We can represent partition λ using its Young diagram

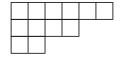


Figure: The Young diagram of (6,4,2), a partition of size 12.

We fix an integer e > 2. A partition is e-regular if it has no e (or more) equal parts.

Example: Partition (7, 7, 4, 3, 3, 3, 3, 2) is 5-regular but not 3-regular.

Irreducible modules

Over a field of characteristic zero, the irreducible modules of the symmetric group S_n are the Specht modules S^{λ} indexed by partitions λ of size n. The same holds for Hecke algebras of quantum characteristic 0.

Irreducible modules

Over a field of characteristic zero, the irreducible modules of the symmetric group S_n are the Specht modules S^{λ} indexed by partitions λ of size n. The same holds for Hecke algebras of quantum characteristic 0.

In (quantum) characteristic e, the Specht modules are not irreducible anymore; the irreducible modules are often denoted by D^{μ} and indexed by e-regular partitions μ of size n.

Irreducible modules

Over a field of characteristic zero, the irreducible modules of the symmetric group S_n are the Specht modules S^{λ} indexed by partitions λ of size n. The same holds for Hecke algebras of quantum characteristic 0.

In (quantum) characteristic e, the Specht modules are not irreducible anymore; the irreducible modules are often denoted by D^{μ} and indexed by e-regular partitions μ of size n.

The irreducible composition factors of the Specht modules in (quantum) characteristic *e* are given by *the decomposition matrix*.

Decomposition matrix

$S^{(\cdot)}$ $D^{(\cdot)}$	6	5,1	4, 2	3,3	4, 1, 1	3, 2, 1	2, 2, 1, 1
6	1						
5, 1	1	1					
4, 2			1				
3, 3		1		1			
4, 1, 1		1			1		
3, 2, 1	1	1		1	1	1	
2, 2, 2	1					1	
3, 1, 1, 1					1	1	
2, 2, 1, 1							1
2, 1, 1, 1, 1				1		1	
1, 1, 1, 1, 1, 1				1			

Table: The decomposition matrix of S_6 in characteristic e=3.

Decomposition matrix

$S^{(\cdot)}$ $D^{(\cdot)}$	6	5,1	4, 2	3,3	4, 1, 1	3, 2, 1	2, 2, 1, 1
6	1						
5, 1	1	1					
4, 2			1				
3, 3		1		1			
4, 1, 1		1			1		
3, 2, 1	1	1		1	1	1	
2, 2, 2	1					1	
3, 1, 1, 1					1	1	
2, 2, 1, 1							1
2, 1, 1, 1, 1				1		1	
1, 1, 1, 1, 1, 1				1			

Table: The decomposition matrix of S_6 in characteristic e=3.

A connected removable group of ae boxes (for some a>0) with no 2×2 square is called an e-divisible hook. Its arm-length equals the number of columns the e-divisible hook spans minus one.

A connected removable group of ae boxes (for some a > 0) with no 2×2 square is called an e-divisible hook. Its arm-length equals the number of columns the e-divisible hook spans minus one.

Figure: A 5-divisible hook of (6,4,2) of arm length 3.

A connected removable group of ae boxes (for some a > 0) with no 2×2 square is called an e-divisible hook. Its arm-length equals the number of columns the e-divisible hook spans minus one.

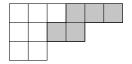


Figure: A 5-divisible hook of (6,4,2) of arm length 3.

A connected removable group of *ae* boxes (for some a > 0) with no 2×2 square is called an *e-divisible hook*. Its *arm-length* equals the number of columns the *e*-divisible hook spans minus one.

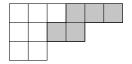


Figure: A 5-divisible hook of (6, 4, 2) of arm length 3.

A connected removable group of *ae* boxes (for some a > 0) with no 2×2 square is called an *e-divisible hook*. Its *arm-length* equals the number of columns the *e*-divisible hook spans minus one.

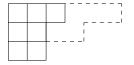


Figure: Finding the 5-core of (6, 4, 2).

A connected removable group of *ae* boxes (for some a > 0) with no 2×2 square is called an *e-divisible hook*. Its *arm-length* equals the number of columns the *e*-divisible hook spans minus one.

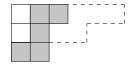


Figure: Finding the 5-core of (6, 4, 2).

A connected removable group of ae boxes (for some a > 0) with no 2×2 square is called an e-divisible hook. Its arm-length equals the number of columns the e-divisible hook spans minus one.

Figure: Finding the 5-core of (6, 4, 2).

The *e-residue* of a box (i,j) of a Young diagram is the remainder of j-i modulo e.

The *e-residue* of a box (i,j) of a Young diagram is the remainder of j-i modulo e.

0	1	2	3	4	0
4	0	1	2		
3	4				

0	1	2	3
4	0	1	
3	4	0	
2			
1			

Figure: The e-residues of partitions (6, 4, 2) and (4, 3, 3, 1, 1).

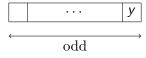
The *e-residue* of a box (i,j) of a Young diagram is the remainder of j-i modulo e.

0 1	2	3	4	0
4 0	_	_		
4 0	1	2		
3 4				

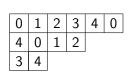
0	1	2	3
4	0	1	
3	4	0	
2			
1			

Figure: The e-residues of partitions (6,4,2) and (4,3,3,1,1).

The *odd sequence* of λ stores in its yth entry $(0 \le y \le e - 1)$ the number of parts of λ of the following form.



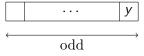
The e-residue of a box (i,j) of a Young diagram is the remainder of j-imodulo e.



0	1	2	3
4	0	1	
3	4	0	
2			
1			

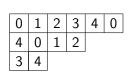
Figure: The e-residues of partitions (6, 4, 2) and (4, 3, 3, 1, 1).

The *odd sequence* of λ stores in its yth entry $(0 \le y \le e - 1)$ the number of parts of λ of the following form.



The partition (6, 4, 2) has odd sequence (0, 0, 0, 0, 0).

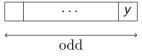
The e-residue of a box (i,j) of a Young diagram is the remainder of j-imodulo e.



0	1	2	3
4	0	1	
3	4	0	
2			
1			

Figure: The e-residues of partitions (6, 4, 2) and (4, 3, 3, 1, 1).

The *odd sequence* of λ stores in its yth entry $(0 \le y \le e - 1)$ the number of parts of λ of the following form.



The partition (4, 3, 3, 1, 1) has odd sequence (1, 2, 1, 0, 0).

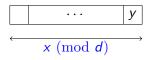
The *e-residue* of a box (i,j) of a Young diagram is the remainder of j-i modulo e.

0	1	2	3	4	0
4	0	1	2		
3	4				

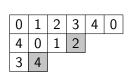
()	1	2	3
7	ļ	0	1	
3	3	4	0	
2	2			
1	Ĺ			

Figure: The e-residues of partitions (6, 4, 2) and (4, 3, 3, 1, 1).

The *d-runner matrix* of λ stores in its (x, y) entry $(1 \le x \le d - 1)$ and $0 \le y \le e - 1$ the number of parts of λ of the following form.



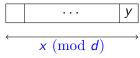
The e-residue of a box (i,j) of a Young diagram is the remainder of j-imodulo e.



0	1	2	3
4	0	1	
3	4	0	
2			
1			

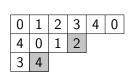
Figure: The e-residues of partitions (6,4,2) and (4,3,3,1,1).

The *d-runner matrix* of λ stores in its (x, y) entry $(1 \le x \le d - 1)$ and $0 \le y \le e - 1$) the number of parts of λ of the following form.



The partition (6,4,2) has 3-runner matrix $\begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$.

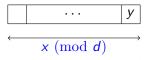
The e-residue of a box (i,j) of a Young diagram is the remainder of j-imodulo e.



0	1	2	3
4	0	1	
3	4	0	
2			
1			

Figure: The e-residues of partitions (6, 4, 2) and (4, 3, 3, 1, 1).

The *d-runner matrix* of λ stores in its (x, y) entry $(1 \le x \le d - 1)$ and $0 \le y \le e - 1$) the number of parts of λ of the following form.



The partition (4,3,3,1,1) has 3-runner matrix $\begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$.

Definition

Let d be a positive integer. We say that a partition λ is d-balanced if d divides all arm lengths of its e-divisible hooks.

Definition

Let d be a positive integer. We say that a partition λ is d-balanced if d divides all arm lengths of its e-divisible hooks.

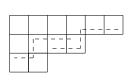
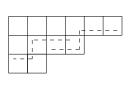


Figure: Partitions (6,4,2) and (4,3,3,1,1) are 3- and 2-balanced, respectively.

Definition

Let d be a positive integer. We say that a partition λ is d-balanced if d divides all arm lengths of its e-divisible hooks.



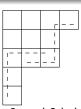


Figure: Partitions (6, 4, 2) and (4, 3, 3, 1, 1) are 3- and 2-balanced, respectively.

Theorem (T. 2025)

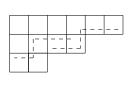
Let e > 1 be an odd integer. The natural map

$$\phi: \{2\text{-balanced partitions}\} \to \{e\text{-cores}\} \times \mathbb{Z}_{\geq 0}^{e}$$

is a bijection. Moreover, μ is e-regular if $\phi_2(\mu)$ contains zero.

Definition

Let d be a positive integer. We say that a partition λ is d-balanced if d divides all arm lengths of its e-divisible hooks.



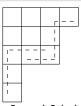


Figure: Partitions (6, 4, 2) and (4, 3, 3, 1, 1) are 3- and 2-balanced, respectively.

Theorem (T. 2025)

Let e > 1 be an odd integer. The natural map

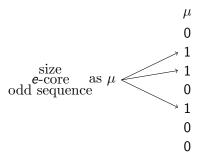
$$\phi: \{d\text{-balanced partitions}\} \to \{e\text{-cores}\} \times \mathbb{Z}_{\geq 0}^{(d-1)\times e}$$

is injective. Moreover, μ is e-regular if $\phi_2(\mu)$ contains zero in its first row.

2-balanced columns

Theorem (Hemmer, T. 2025+)

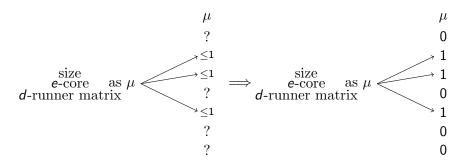
Let e be an odd prime. The decomposition column labelled by a 2-balanced e-regular partition μ contains ones in rows labelled by partitions with the same size, e-core and odd sequence as μ , and zeros elsewhere.



d-balanced columns

Theorem (Gustavsson, Law, T. 2025+)

Let e>d>1 be coprime integers. If the decomposition column labelled by a d-balanced e-regular partition μ contains ones or zeros in rows labelled by partitions with the same size, e-core and d-runner matrix as μ , then these entries are ones, and the other entries in this column are zeros.



Ideas behind the proofs

 The previous result uses the Jantzen–Schaper formula and suitable algorithms on partitions.

Ideas behind the proofs

- The previous result uses the Jantzen–Schaper formula and suitable algorithms on partitions.
- For d=2, one can build on the result of Giannelli and Wildon, who found vertices of indecomposable summands of Foulkes modules

$$H^{(2^m)}=\mathbf{1}\!\uparrow_{S_2\wr S_m}^{S_{2m}}$$

and 'twisted' Foulkes modules

$$H^{(2^m,k)} = \left(H^{(2^m)} \boxtimes \operatorname{sgn}\right) \uparrow_{S_{2m} \times S_k}^{S_{2m+k}}$$

.

Ideas behind the proofs

- The previous result uses the Jantzen–Schaper formula and suitable algorithms on partitions.
- For d=2, one can build on the result of Giannelli and Wildon, who found vertices of indecomposable summands of Foulkes modules

$$H^{(2^m)}=\mathbf{1}\!\uparrow_{S_2\wr S_m}^{S_{2m}}$$

and 'twisted' Foulkes modules

$$H^{(2^m,k)} = \left(H^{(2^m)} \boxtimes \operatorname{sgn}\right) \uparrow_{S_{2m} \times S_k}^{S_{2m+k}}$$

.

• For central orthogonal primitive idempotents a of $\mathbb{F}_e S_{2m}$ and b of $\mathbb{F}_e S_{2m+k}$, partitions in $b\left(\left(aH^{(2^m)}\boxtimes\operatorname{sgn}\right)\uparrow_{S_{2m}\times S_k}^{S_{2m+k}}\right)$ share size, e-core and odd sequence.