

Übungsblatt 4 Prof. Dr. Jürgen Saal Christiane Bui Sommersemester 2020

Ausgabe: Di., 12.05.2020, Abgabe: Di., 19.05.2020

Einführung in die Funktionalanalysis

B Aufgabe 4.1: (Stetige Inverse) (9+9 Punkte)

Seien X und Y normierte Räume und $T: X \to Y$ ein linearer Operator.

(i) Zeigen Sie, dass T genau dann eine auf T(X) definierte stetige Inverse T^{-1} besitzt, wenn es c>0 gibt, sodass

$$c \, \|x\|_X \leqslant \|Tx\|_Y \qquad \quad \text{für alle } x \in X.$$

(ii) Zeigen Sie, dass T genau dann keine auf T(X) definierte stetige Inverse besitzt, wenn es eine Folge von Vektoren $x_1, x_2, \ldots \in X$ der Norm $||x_n||_X = 1$ gibt mit

$$Tx_n \xrightarrow{n \to \infty} 0.$$

Aufgabe 4.2: (Beschränktheit und gleichmäßige Summierbarkeit in ℓ^1)

Eine Teilmenge $K \subseteq \ell^1$ heißt gleichmäßig summierbar, wenn es für alle $\varepsilon > 0$ ein $N \in \mathbb{N}$ gibt, sodass für alle $x = (x_1, x_2, \ldots) \in K$

$$\sum_{n=N}^{\infty} |x_n| \leqslant \varepsilon$$

gilt.

Zeigen Sie, dass eine Teilmenge $K\subseteq \ell^1$ genau dann präkompakt ist, wenn sie beschränkt und gleichmäßig summierbar ist.

Aufgabe 4.3: (Kompaktheit in c_0)

Sei K eine kompakte Teilmenge von c_0 . Zeigen Sie, dass es dann $y \in c_0$ gibt, sodass für alle $x \in K$ und alle $n \in \mathbb{N}$

$$|x_n| \leqslant y_n$$
.

Hinweis: Zeigen Sie, dass $\sup_{x \in K} |x_n|$ für jedes $n \in \mathbb{N}$ endlich ist und untersuchen Sie die dadurch definierte Folge.