

Übungsblatt 4 Prof. Dr. Jürgen Saal Christiane Bui, Elisabeth Reichwein Wintersemester 2019/2020

Ausgabe: Di., 29.10.2019, Abgabe: Di., 05.11.2019

Einführung in die partiellen Differentialgleichungen

B Aufgabe 4.1: (6 Punkte)

Zeigen Sie Lemma 3.4 c), d. h. zeigen Sie, dass für $f \in C_c(\mathbb{R}^n)$ und $g \in L^1(\mathbb{R}^n)$ mit g = 0 λ_n -fast überall auf $\mathbb{R}^n \setminus K$ für $K \subset \mathbb{R}^n$

$$\operatorname{supp}(f * g) \subset \operatorname{supp}(f) + \overline{K}$$

gilt.

B Aufgabe 4.2: (12 Punkte)

Entscheiden Sie, welche der folgenden Abbildungen $T: \mathscr{D}(\mathbb{R}^n) \to \mathbb{R}$ linear bzw. stetig bzw. Distributionen sind. Bestimmen Sie gegebenenfalls die Ordnung.

Betrachten Sie in (i) lediglich den Fall $T: \mathcal{D}(\mathbb{R}) \to \mathbb{R}$.

(i)
$$T\varphi = \varphi'(0)$$
, (ii) $T\varphi = \int_{\mathbb{R}^n} \varphi^2(x) \, \mathrm{d}x$,

(iii)
$$T\varphi = \sup_{x \in \mathbb{R}^n} |\varphi(x)|,$$
 (iv) $T\varphi = \sum_{k=0}^{\infty} \varphi(ke_1),$

(v)
$$T\varphi = \sum_{k=0}^{\infty} \frac{\partial^k}{\partial x_1^k} \varphi(0)$$
, (vi) $T\varphi = \sum_{k=0}^{\infty} \frac{\partial^k}{\partial x_1^k} \varphi(ke_1)$.

Aufgabe 4.3:

(i) Zeigen Sie Lemma 3.4 a), d. h. zeigen Sie, dass für $f, g, h \in L^1(\mathbb{R}^n)$

$$(f * g) * h = f * (g * h)$$

gilt.

(ii) Bestimmen Sie sämtliche Ableitungen der Dirac-Distribution $\delta_0 \in \mathscr{D}'(\mathbb{R})$.