Übungsblatt 8

Funktionentheorie, SoSe 2019

Dr. Matthias Köhne

Ausgabe: Di., 21.05.2019, Abgabe: Di., 28.05.2019

HEINRICH HEINE
UNIVERSITÄT DÜSSELDORF

Aufgabe 1: (Ganze Funktionen, 2 Punkte)

Sei $f: \mathbb{C} \longrightarrow \mathbb{C}$ eine nicht-konstante, ganze Funktion. Zeigen Sie, dass $f(\mathbb{C})$ dicht liegt in \mathbb{C} .

HINWEIS: Nehmen Sie an, dass $f(\mathbb{C})$ nicht dicht liegt in \mathbb{C} und denken Sie an den Satz von Liouville.

Aufgabe 2: (Identitätssatz, 4 Punkte)

Geben Sie ein Beispiel für ein Gebiet $\Omega \subseteq \mathbb{C}$ und holomorphe Funktionen $f, g : \Omega \longrightarrow \mathbb{C}$ an, so dass die Menge $\{z \in \Omega : f(z) = g(z)\}$ einen Häufungspunkt in \mathbb{C} hat, ohne dass f = g in Ω ist. Warum ist es möglich, so ein Beispiel zu konstruieren ohne dabei einen Widerspruch zum Identitätssatz zu erzeugen?

Aufgabe 3: (Das nullstellenzählende Integral für Kreisscheiben, 2+2+2+2 Punkte)

Seien $\Omega \subseteq \mathbb{C}$ ein Gebiet, $a \in \Omega$ und $\varepsilon > 0$ so, dass $\bar{D}_{\varepsilon}(a) \subseteq \Omega$. Sei $f : \Omega \longrightarrow \mathbb{C}$ holomorph und ohne Nullstelle auf $\partial D_{\varepsilon}(a)$. Seien $a_1, \ldots, a_m \in D_{\varepsilon}(a)$ paarweise verschieden, so dass $N_f \cap \bar{D}_{\varepsilon}(a) = \{a_1, \ldots, a_m\}$, wobei $N_f = \{z \in \Omega : f(z) = 0\}$. Sei $n_k := \operatorname{ord}_f(a_k) \in \mathbb{N}$ für $k = 1, \ldots, m$.

a) Zeigen Sie, dass eine holomorphe Funktion $g:\Omega\longrightarrow\mathbb{C}$ ohne Nullstelle in $\bar{D}_{\varepsilon}(a)$ existiert, so dass

$$f(z) = (z - a_1)^{n_1} \cdots (z - a_m)^{n_m} g(z),$$
 $z \in \Omega.$

b) Zeigen Sie, dass

$$\frac{f'(z)}{f(z)} = \sum_{k=1}^{m} \frac{n_k}{z - a_k} + \frac{g'(z)}{g(z)}, \qquad z \in \partial D_{\varepsilon}(a).$$

c) Zeigen Sie, dass ein Gebiet $U \subseteq \Omega$ mit $\bar{D}_{\varepsilon}(a) \subseteq U$ existiert, so dass $(g'/g)|_{U}: U \longrightarrow \mathbb{C}$ wohldefiniert und holomorph ist. Folgern Sie, dass

$$\frac{1}{2\pi i} \int_{\partial D_{\varepsilon}(a)} \frac{g'(z)}{g(z)} dz = 0.$$

d) Zeigen Sie, dass

$$\frac{1}{2\pi i} \int_{\partial D_{\varepsilon}(a)} \frac{f'(z)}{f(z)} dz = \sum_{z \in \bar{D}_{\varepsilon}(a)} \operatorname{ord}_{f}(z).$$

HINWEIS: Für a) verwenden Sie Korollar 1.5.14. Für c) verwenden Sie Theorem 1.4.6.

Aufgabe 4: (Biholomorphe Funktionen, 4 Punkte)

Seien $\Omega \subseteq \mathbb{C}$ ein Gebiet und $f:\Omega \longrightarrow \mathbb{C}$ holomorph und injektiv. Zeigen Sie, dass dann $\Omega':=f(\Omega)\subseteq \mathbb{C}$ ein Gebiet ist, dass $f'(z)\neq 0$ ist für alle $z\in \Omega$, und, dass $f^{-1}:\Omega'\longrightarrow \Omega$ holomorph ist.

HINWEIS: Verwenden Sie Proposition 1.1.14, den Satz von der lokalen Verblätterung (Korollar 1.5.18) und den Satz von der offenen Abbildung (Korollar 1.5.19).