Funktionenräume Sommersemester 2022

Mathematisches Institut Heinrich-Heine-Universität Düsseldorf Priv.-Doz. Dr. Matthias Köhne

Übungsblatt 4

Ausgabe: Mo., 02.05.2022, 14:00 Uhr Besprechung: Mi., 11.05.2022 in der Übung

Aufgabe 4.1: (Konvexe Hülle)

Sei $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ und seien X ein \mathbb{F} -linearer Raum sowie $\emptyset \neq A \subseteq X$. Zeigen Sie:

(a) Es ist

$$co(A) = \left\{ \sum_{k=1}^{n} \lambda_k x_k : n \in \mathbb{N}, \ \lambda_1, \dots, \lambda_n \ge 0, \ \sum_{k=1}^{n} \lambda_k = 1, \ x_1, \dots, x_n \in A \right\}.$$

(b) Ist A kreisförmig, so ist co(A) absolutkonvex.

Aufgabe 4.2: (Distanzfunktional)

Seien $n \in \mathbb{N}$ und $\emptyset \neq U \subseteq \mathbb{R}^n$. Das Distanzfunktional $\operatorname{dist}(\cdot, U) : \mathbb{R}^n \longrightarrow [0, \infty)$ für U ist gegeben als $\operatorname{dist}(x, U) := \inf_{u \in U} |x - u|$ für $x \in \mathbb{R}^n$. Zeigen Sie, dass $\operatorname{dist}(\cdot, U)$ nicht-expansiv ist, d. h.

$$|\operatorname{dist}(x, U) - \operatorname{dist}(y, U)| \le |x - y|,$$
 $x, y \in \mathbb{R}^n,$

und, dass $\operatorname{dist}(x, U) = 0$ für $x \in \mathbb{R}^n$ genau dann gilt, wenn $x \in \overline{U}$.

Aufgabe 4.3: (Kompakte Ausschöpfungen)

Seien $n \in \mathbb{N}$ und $\Omega \subseteq \mathbb{R}^n$ ein Gebiet. Zeigen Sie:

- (a) Ist $(A_j)_{j\in\mathbb{N}}\subseteq \mathcal{P}(\Omega)\setminus\{\varnothing\}$ eine kompakte Ausschöpfung von Ω und ist $A\subseteq\Omega$ kompakt, dann existiert ein $j\in\mathbb{N}$, so dass $A\subseteq A_j$.
- (b) Ist $\Omega \neq \mathbb{R}^n$, dann ist durch

$$A_j := \left\{ x \in \Omega \, : \, |x| \le j \text{ und } \operatorname{dist}(x, \, \partial \Omega) \ge \frac{1}{j} \right\}, \qquad j \in \mathbb{N},$$

eine kompakte Ausschöpfung $(A_j)_{j\in\mathbb{N}}$ von Ω gegeben.

Aufgabe 4.4: (Glatte Funktionen)

Geben Sie ein Beispiel für eine beliebig oft differenzierbare Funktion $f:[-1,1] \longrightarrow \mathbb{R}$ an, so dass $f^{(k)}(0) \ge 2^k$ für alle $k \in \mathbb{N}$ gilt.