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Last week

Let GG be a linear algebraic group over Q.

Definition:

A subgroup I' C G(Q) is arithmetic if it is commensurable to
Go(Z) for some integral form Gy of G.

integral form: a group scheme Gy over Z with an isomorphism

E@/Z(GO) =3G.

Recall: Here group schemes are affine and of finite type.



S-arithmetic groups

S a finite set of prime numbers.

1
ZS::Z[E\pES]

Definition:

A subgroup I' C G(Q) is S-arithmetic if it is commensurable to
Go(Zg) for some integral form Gg of G.
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Properties of arithmetic groups

Theorem 2: Let I' C G(Q) be an arithmetic group.

I" is residually finite.

I is virtually torsion-free.
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I" has only finitely many conjugacy classes of finite subgroups.
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Proof: I' virtually torsion-free

Assume I' = Gy (Z).
Claim: Go(Z,b) is torsion-free for b > 3.

b
Go(Z, pr) = ker(Go(Z) — Go(Z/bZ))

Suppose g € Go(Z,b) has finite order > 1.
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Proof: I' virtually torsion-free

m g = ¢+ bh with h: Og, — Z onto.

m ord(g) = p prime.
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Group schemes and topological groups

R : commutative unital ring
G : affine group scheme over R

A : an R-algebra which is also a topological ring. (Q(C, @f( A\

Observation:
G(A) is a topological group with respect the topology induced by
coordinates

o
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Group schemes and topological groups

A : an R-algebra which is also a topological ring.
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If o: G — H is a closed embedding of affine group schemes over
R, then

Observation:

va: G(A) — H(A)

is a continuous closed embedding of topological groups.
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Group schemes and topological groups

G- affine group scheme over Z.
Consequences:

m G(R) is a real Lie group (with finitely many connected
components).
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m G(Z) C G(R) is a discrete subgroup.
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Theorem of Borel and Harish-Chandra
G linear algebraic group over QQ

I' C G(Q) arithmetic subgroup

I' € G(R) has finite covolume

= Swﬁ)‘d“""
there is no surjective homomorphism G — G,,,. (
! P ™ L a@)—

I' C G(R) is cocompact
<~
there is no closed embedding G,,, — G.

Remark: Every surjective G — G, splits.
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Examples
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B Z=Ggu(Z) CR = Gy(R) is cocompact
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m GL,(Z) C GL,(R) is not a lattice
ot GL. —> G, » swyeche.
m SL,(Z) C SL,(R) is a lattice but is not cocompact a
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Diagonalization Lemma

Let ¢: G,, — GL, be a homomorphism of linear algebraic groups
over K. There is a matrix g € GL,,(K) s.t.

A%
A2

Aen

for certain ey, ...,e, € Z and for all A € K*.

Note: If ¢ is a closed embedding, then e; # 0 for some 3.



More examples (1)

The Heisenberg group is cocompact:

1
H3(Z) = { (8
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More examples (2)

F = Q(v/2) quadratic number field

o F—R with V21— 2
o9: FF— R with V21— —v2

Observation:
(01,02): F—-RxR

induces an isomorphism R ®g /' — R x R.



More examples (2)

Define:

G(A) ={g € GLy41(A®z Z[V2]) | g7 Jg = J}

-2
1
where J =

1
Observation: G(R) =2 O(n,1) x O(n+ 1)
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More examples (2)

Claim: G(Z) C G(R) 2 O(n,1) x O(n + 1) is cocompact.
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More examples (2)

Claim: G(Z) C ) X O(n + 1) is cocompact.
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An observation

Lemma: Let G, H be real Lie groups with finitely many connected
components. Let p: G — H be a surjective homomorphism with
compact kernel K = ker(¢p).

Assume I" C (G is a discrete subgroup, then the following hold:
o(I') C H is discrete.
I torsion-free = T = ¢(T").
G/I' compact <= H/p(I') compact.

I' C Gis a lattice <= (') C H is a lattice.



Proof
-l
Fact: ¢ is open and proper. (q (C) Cowpack A Ca c:..‘au})

(1) Let h € H, U C H an open relatively compact neighbourhood.
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Proof

Fact: ¢ is open and proper.
(3) “=": ¢ induces is a surjective continuous map

©: G/T — H/p(D).

3l v i qr)

“<"If H/p(T') is compact, there is a compact set C' C H with
Cy(T) = H.
Then o~ 1(C)I = G.
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Back to the example

I'=G(Z) = {9 € QLo (Z[V2]) | g"Jg = T}

is a discrete cocompact subgroup of G(R) = O(n,1) x O(n + 1).

Project onto first factor:

" is a discrete cocompact subgroup of O(n, 1).



Arithmetically defined groups

Definition:

Let H be a real Lie group with finitely many connected
ts.

components - (NA’“:]

A lattice A C H is arithmetically defined if

boriblomehe )

m there is a linear algebraic group G over Q,
m an arithmetic subgroup I' C G(Q) N G(R)? and

®m a surjective homomorphism ¢: G(R)? — H°
with compact kernel

such that A and ¢(I') commensurable.



Margulis' arithmeticity

Theorem [Margulis]:

Let H be a connected simple Lie group such that

H = G(R)? for some linear algebraic R-group G of R-rank > 2.
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Every lattice A C H is arithmetically defined. 2
Y = Y Gw — &g
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Simple groups of R-rank > 2

m SL,(R) for n > 3. \re (SL., ) =n-\
m Spy,(R) for n > 2. Yl (g?b\) =W

m SO(p, q) for p,q > 2. vl @Cf(q‘_\) = /“;‘“(ﬁ‘!‘ )

m SU(p,q) for p,q > 2.



Triangle groups

Hyperbolic triangle group: (¢, m,n) with % + % + % < 1.
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Has a subgroup I'(¢,m n) of index 2 which is a lattice in
PSLy(R) = Isom™ (H?



Takeuchi's Theorem:

I'(¢,m,n) is arithmetically defined if and only if all other roots of
the minimal polynomial of

M, m,n) = 4ck + 4c2, + 4c2 + Scocmen — 4
are real and negative (where ¢, = cos(%)).

Arithmetic examples: (2,3,7), (2,8,8), (6,6,6), ... Q’L':j Y]K“M'(((‘J WL‘)‘.

Non-arithmetic examples: (2,5,7), (3,7,7), (4,11,13), ...



Questions?
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