An introduction to arithmetic groups (via group schemes)

Steffen Kionke

02.07.2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Content

- Properties of arithmetic groups
- Arithmetic groups as lattices in Lie groups

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Last week

Let G be a linear algebraic group over \mathbb{Q} .

Definition:

A subgroup $\Gamma \subseteq G(\mathbb{Q})$ is arithmetic if it is commensurable to $G_0(\mathbb{Z})$ for some integral form G_0 of G.

integral form: a group scheme G_0 over $\mathbb Z$ with an isomorphism

 $E_{\mathbb{Q}/\mathbb{Z}}(G_0) \cong G.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Recall: Here group schemes are affine and of finite type.

S-arithmetic groups

S: a finite set of prime numbers.

$$\mathbb{Z}_S := \mathbb{Z}\big[\frac{1}{p} \mid p \in S\big]$$

Definition:

A subgroup $\Gamma \subseteq G(\mathbb{Q})$ is *S*-arithmetic if it is commensurable to $G_0(\mathbb{Z}_S)$ for some integral form G_0 of *G*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Properties of arithmetic groups

Theorem 2: Let $\Gamma \subseteq G(\mathbb{Q})$ be an arithmetic group.

🗸 1 Γ is residually finite.

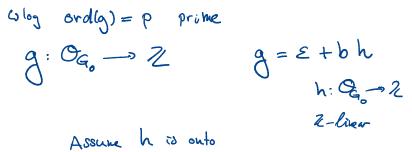
Γ is virtually torsion-free.
Γ I with Γ tordion free
Γ has only finitely many conjugacy classes of finite subgroups.
F = finitely many too classes of finite subgroups
F = finite = Fn F = leg F iso maphie to a subgroup Γ / J
Γ is finitely presented.

A D N A 目 N A E N A E N A B N A C N

Proof: Γ virtually torsion-free

Assume
$$\Gamma = G_0(\mathbb{Z})$$
.
Claim: $G_0(\mathbb{Z}, b)$ is torsion-free for $b \ge 3$.
 $G_0(\mathbb{Z}, p) = \ker(G_0(\mathbb{Z}) \to G_0(\mathbb{Z}/b\mathbb{Z}))$

Suppose $g \in G_0(\mathbb{Z}, b)$ has finite order > 1.



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof: Γ virtually torsion-free

• $g = \varepsilon + bh$ with $h: \mathcal{O}_{G_0} \to \mathbb{Z}$ onto.

• $\operatorname{ord}(g) = p$ prime.

Group schemes and topological groups

- R: commutative unital ring
- G: affine group scheme over R
- A : an R-algebra which is also a topological ring. $(\mathbb{R}_{\mathcal{O}}, \mathbb{Q}_{\mathcal{O}}, \mathbb{A}_{\cdots})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Observation:

G(A) is a topological group with respect the topology induced by coordinates

$$\psi_{c,A} \colon G(A) \xrightarrow{\cong} V_A(I_c) \subseteq A^n$$
 for oluct to pology

Fact: Does not depend on chosen coordinates.

Group schemes and topological groups

A: an $R\mbox{-algebra}$ which is also a topological ring.

Observation:

If $\varphi \colon G \to H$ is a closed $\mathit{embedding}$ of affine group schemes over R, then

$$\varphi_A \colon G(A) \to H(A)$$

is a continuous *closed embedding* of topological groups.

(Hint: pick coordinates for H and push the to G Ic = Ic

 $G(A) \cong V_{A}(I_{c}) \subseteq V_{A}(I_{c}) \cong H(A)$

Group schemes and topological groups

G: affine group scheme over \mathbb{Z} .

Consequences:

■ *G*(ℝ) is a real Lie group (with finitely many connected components).

 $Q: E_{\mathbb{R}/2}(G) \hookrightarrow GL_n$ closed entrologing $G(\mathbb{R}) \subseteq GL_n(\mathbb{R})$ Lie group ? Fact- real algo voretics have finitely vary (Enclishern " co-posed) $= G(\mathbb{Z}) \subseteq G(\mathbb{R})$ is a discrete subgroup.

$$\begin{array}{ccc} G(\mathbf{R}) & \cong & \bigvee(\mathbf{I}_{c}) \subseteq \mathbf{R}^{n} \\ UI & & UI \\ G(\mathbf{Z}) & \cong & \bigvee_{\mathbf{Z}}(\mathbf{I}_{c}) \subseteq \mathbf{Z}^{n} \end{array}$$

١.

Theorem of Borel and Harish-Chandra

G linear algebraic group over \mathbb{Q}

 $\Gamma \subseteq G(\mathbb{Q})$ arithmetic subgroup

"lattice" **1** $\Gamma \subseteq G(\mathbb{R})$ has finite covolume there is no surjective homomorphism $G \to \mathbb{G}_m$. \Leftrightarrow

2 $\Gamma \subseteq G(\mathbb{R})$ is cocompact \Leftrightarrow there is *no* closed embedding $\mathbb{G}_m \to G$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Remark: Every surjective $G \to \mathbb{G}_m$ splits.

Examples

$$\mathbb{Z} = \mathbb{G}_a(\mathbb{Z}) \subseteq \mathbb{R} = \mathbb{G}_a(\mathbb{R}) \text{ is cocompact}$$

$$\mathbb{E}_{\text{xeccise}}: \text{ There } \text{ to surjective hom}: \mathbb{Q}[\text{T}] \to \mathbb{Q}[\text{T},\text{T}]$$

$$\text{of } \mathbb{E}_{-\text{algebra}} \text{ surjective } \text{ for } \mathbb{C}[\text{T}]$$

RAZCI

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $\operatorname{GL}_n(\mathbb{Z}) \subseteq \operatorname{GL}_n(\mathbb{R})$ is not a lattice $det : \operatorname{GL}_n \longrightarrow \operatorname{Gm}_n$ is surjective.

• $SL_n(\mathbb{Z}) \subseteq SL_n(\mathbb{R})$ is a lattice but is not cocompact not cocapact: Gun - SLn Q (Q 2' 1) lattice: Q: SLn - Gun $Q_{\mathbb{R}}: SL_n(\mathbb{R}) \to \mathbb{R}^{\times}$ Sinde

Diagonalization Lemma

Let $\varphi \colon \mathbb{G}_m \to \mathrm{GL}_n$ be a homomorphism of linear algebraic groups over K. There is a matrix $g \in \mathrm{GL}_n(K)$ s.t.

$$g\varphi(\lambda)g^{-1} = \begin{pmatrix} \lambda^{e_1} & & \\ & \lambda^{e_2} & \\ & & \ddots & \\ & & & \lambda^{e_n} \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for certain $e_1, \ldots, e_n \in \mathbb{Z}$ and for all $\lambda \in K^{\times}$.

Note: If φ is a closed embedding, then $e_i \neq 0$ for some *i*.

The Heisenberg group is cocompact:

$$H_3(\mathbb{Z}) = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{Z} \right\} \subseteq H_3(\mathbb{R})$$

$$R_{\underline{casoh}} : \qquad \text{elemats } \neq \underline{\Lambda}_3 \qquad \text{ore not}$$

$$Oliagonalizable .$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $F = \mathbb{Q}(\sqrt{2})$ quadratic number field

$$\begin{aligned} \sigma_1 \colon F \to \mathbb{R} & \text{with} \quad \sqrt{2} \mapsto \sqrt{2} \\ \sigma_2 \colon F \to \mathbb{R} & \text{with} \quad \sqrt{2} \mapsto -\sqrt{2} \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Observation:

 $(\sigma_1, \sigma_2) \colon F \to \mathbb{R} \times \mathbb{R}$ induces an isomorphism $\mathbb{R} \otimes_{\mathbb{Q}} F \xrightarrow{\boldsymbol{\cong}} \mathbb{R} \times \mathbb{R}$.

Define:

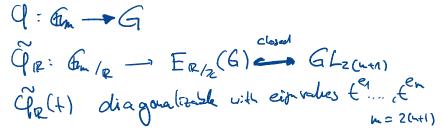
$$G(A) = \{g \in \operatorname{GL}_{n+1}(A \otimes_{\mathbb{Z}} \mathbb{Z}[\sqrt{2}]) \mid g^T J g = J\}$$

where
$$J = \begin{pmatrix} -\sqrt{2} & & \\ & 1 & \\ & & \ddots & \\ & & & 1 \end{pmatrix}$$

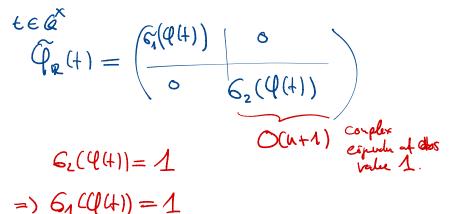
Observation: $G(\mathbb{R}) \cong O(n,1) \times O(n+1)$ $\{g \in GL_{n,n} (\mathbb{R} \oplus F) \setminus g \ni g = j\}$ $= \langle (g_{A}, g_{Z}) \in GL_{n+1}(\mathbb{R}) \times GL_{n+1}(\mathbb{R}) \mid g_{T} \ni g_{A} = j, g_{Z} \in j \}$ $= \{g_{A}, g_{Z}\} \in GL_{n+1}(\mathbb{R}) \times GL_{n+1}(\mathbb{R}) \mid g_{T} \ni g_{A} = j, g_{Z} \in j \}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Claim: $G(\mathbb{Z}) \subseteq G(\mathbb{R}) \cong O(n,1) \times O(n+1)$ is cocompact.



Claim: $G(\mathbb{Z}) \subseteq G(\mathbb{R}) \cong O(n,1) \times O(n+1)$ is cocompact.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ()

I is not a closed enbedding.

An observation

Lemma: Let G, H be real Lie groups with finitely many connected components. Let $\varphi \colon G \to H$ be a surjective homomorphism with compact kernel $K = \ker(\varphi)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Assume $\Gamma \subseteq G$ is a discrete subgroup, then the following hold:

1 $\varphi(\Gamma) \subseteq H$ is discrete.

2
$$\Gamma$$
 torsion-free $\implies \Gamma \cong \varphi(\Gamma)$.

3
$$G/\Gamma$$
 compact $\iff H/\varphi(\Gamma)$ compact.

4
$$\Gamma \subseteq G$$
 is a lattice $\iff \varphi(\Gamma) \subseteq H$ is a lattice.

Proof

Fact:
$$\varphi$$
 is open and proper. $(\mathcal{G}^{-1}(\mathcal{C}) \text{ compact } \mathcal{H} \subset n \text{ cupact})$
(1) Let $h \in H, U \subseteq H$ an open relatively compact neighbourhood.
compact $\mathcal{Q}^{-1}(\overline{u}) \supseteq \mathcal{Q}^{-1}(u)$ $\mathcal{Q}^{-1}(u) \cap \mathcal{T}$ blinite
 $\mathcal{Q}(\mathcal{Q}^{-1}(u) \cap \mathcal{T}) = \mathcal{U} \cap \mathcal{Q}(\mathcal{T})$ is finite
 $\mathcal{Q}(\mathcal{Q}^{-1}(u) \cap \mathcal{T}) = \mathcal{U} \cap \mathcal{Q}(\mathcal{T})$ is finite
(2) $\Gamma \cap \mathcal{K}$ discrede and compact =1 finite
 $\mathcal{U}(\mathcal{L}) \subseteq \mathcal{Q}(\mathcal{L})$

(ロ) (型) (主) (主) (三) のへで

Proof

Fact: φ is open and proper.

(3) " \Rightarrow ": φ induces is a surjective continuous map

$$\overline{\varphi} \colon G/\Gamma \to H/\varphi(\Gamma).$$

$$\mathfrak{gl} \mathrel{\rightarrowtail} \mathfrak{gl}(\mathfrak{g}) \mathfrak{gl}(\Gamma)$$

" \Leftarrow ": If $H/\varphi(\Gamma)$ is compact, there is a compact set $C \subseteq H$ with

$$C\varphi(\Gamma) = H.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Then $\varphi^{-1}(C)\Gamma = G$. and $Q^{-1}(C)$ maps onto $G_{/\Gamma}$ \Longrightarrow compact.

$$\Gamma = G(\mathbb{Z}) = \left\{ g \in \operatorname{GL}_{n+1}(\mathbb{Z}[\sqrt{2}]) \mid g^T J g = J \right\}$$

is a discrete cocompact subgroup of $G(\mathbb{R}) \cong O(n, 1) \times O(n+1)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Project onto first factor:

 Γ is a discrete cocompact subgroup of $\mathrm{O}(n,1).$

Arithmetically defined groups

Definition:

Let H be a real Lie group with finitely many connected components. (mostly "arithmetic")

A lattice $\Delta \subseteq H$ is arithmetically defined if

- there is a linear algebraic group G over Q,
- \blacksquare an arithmetic subgroup $\Gamma \subseteq G(\mathbb{Q}) \cap G(\mathbb{R})^0$ and

• a surjective homomorphism $\varphi \colon G(\mathbb{R})^0 \to H^0$ with compact kernel

such that Δ and $\varphi(\Gamma)$ commensurable.

Margulis' arithmeticity

Theorem [Margulis]:

Let H be a connected simple Lie group such that

 $H = G(\mathbb{R})^0$ for some linear algebraic \mathbb{R} -group G of \mathbb{R} -rank ≥ 2 .

Every lattice $\Delta \subseteq H$ is arithmetically defined.

> closed enbeddlug

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

(OKS

& eg. It trivial carb , the H= Aut ()

Simple groups of \mathbb{R} -rank ≥ 2

• $SL_n(\mathbb{R})$ for $n \ge 3$. $V^{1}(SL_n) = n - 1$

$$\geq 2.$$
 rk (Sp2n) = N

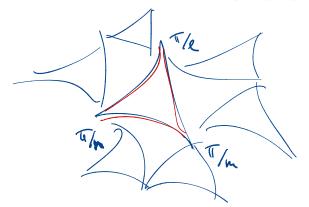
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- SO(p,q) for $p,q \ge 2$. (ref. (p,q)) = Min(p,q)
- SU(p,q) for $p,q \ge 2$.

• $\operatorname{Sp}_{2n}(\mathbb{R})$ for n

Triangle groups

Hyperbolic triangle group: (ℓ, m, n) with $\frac{1}{\ell} + \frac{1}{m} + \frac{1}{n} < 1$.



Has a subgroup $\Gamma(\ell,m,n)$ of index 2 which is a lattice in $PSL_2(\mathbb{R})=Isom^+(\mathbb{H}^2)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Takeuchi's Theorem:

 $\Gamma(\ell,m,n)$ is arithmetically defined if and only if all other roots of the minimal polynomial of

$$\lambda(\ell, m, n) = 4c_{\ell}^2 + 4c_m^2 + 4c_n^2 + 8c_{\ell}c_mc_n - 4$$

are real and negative (where $c_k = \cos(\frac{\pi}{k})$).

Arithmetic examples: (2,3,7), (2,8,8), (6,6,6), ... Only finitely name

Non-arithmetic examples: (2, 5, 7), (3, 7, 7), (4, 11, 13), ...

2[%]

$G_{o}(\mathcal{Z}(\mathcal{H})) \subseteq G(\mathbb{R}) \times G(\mathcal{R})$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Questions?