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@ Twisted conjugacy and R
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1 Twisted conjugacy and R,

Given a group G and an automorphism ¢ € Aut(G), the
(- )Reidemeister class of g € G is

l9le = {hge(h)™" | h e G}.
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1 Twisted conjugacy and R,

Given a group G and an automorphism ¢ € Aut(G), the
(- )Reidemeister class of g € G is

l9le = {hge(h)™" | h e G}.

Reidemeister number:

R(p) = [{lgle | 9 € G}
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A group G has property R, if, for all ¢ € Aut(G), one has

R(p) = oo.
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Example

Z is abelian and infinite so that R(id) = oo.
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Example

Z is abelian and infinite so that R(id) = oo.
However, R(—id) = 2:

[0]—ig = {even numbers}, [1]_ijg = {odd numbers}.
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Examples of groups with R,
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Examples of groups with R,

» (Fel'shtyn & Gongalves) Baumslag-Solitar groups

BS(1,p) = (a,b | aba~! = W);
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Examples of groups with R,

» (Fel'shtyn & Gongalves) Baumslag-Solitar groups

BS(1,p) = (a,b | aba™" = b7);

> (Taback & Wong) Generalized solvable Baumslag-Solitar groups;
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Examples of groups with R,

» (Fel'shtyn & Gongalves) Baumslag-Solitar groups

BS(1,p) = (a,b | aba™" = b7);

> (Taback & Wong) Generalized solvable Baumslag-Solitar groups;
> (Goncalves & Wong) Lamplighter groups C}, 1 Z for p = 2 or 3;
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Examples of groups with R

» (Fel'shtyn & Gongalves) Baumslag-Solitar groups

BS(1,p) = (a,b | aba™" = b7);

> (Taback & Wong) Generalized solvable Baumslag-Solitar groups;
> (Goncalves & Wong) Lamplighter groups C}, 1 Z for p = 2 or 3;

» (Dekimpe, Gongalves, Wong and others) Certain (but not all)
polycylic groups;
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Examples of groups with R

» (Fel'shtyn & Gongalves) Baumslag-Solitar groups

BS(1,p) = (a,b | aba™" = b7);

> (Taback & Wong) Generalized solvable Baumslag-Solitar groups;

> (Goncalves & Wong) Lamplighter groups C}, 1 Z for p = 2 or 3;

» (Dekimpe, Gongalves, Wong and others) Certain (but not all)
polycylic groups;

» (Nasybullov) Groups of unitriangular matrices over certain
integral domains as long as their nilpotency class is large enough.
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Goal

Put previous soluble examples in a common framework or generalize
them if possible.
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Goal

Put previous soluble examples in a common framework or generalize
them if possible.

Idea

Investigate upper triangular matrices over integral domains.
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Goal

Put previous soluble examples in a common framework or generalize
them if possible.

Idea

Investigate upper triangular matrices over integral domains.
Develop methods to determine R, depending on base ring.
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2  Outline

@® Upper triangular matrix groups over R
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Throughout, R is an integral domain.
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Throughout, R is an integral domain.

Consider the group
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Some variations

» Projective PB,,(R)
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Some variations

» Projective PB,,(R)

_ Bu(R)
B = 7B, @)
> Affine group
Aff(R) = [; | < GLa(R)
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Some variations

» Projective PB,,(R)

_ B.(R)
B = 7B,y
> Affine group
AfF(R) = [8 I < GLy(R).

Similarly B,7(R), Aff(R) and PB, (R) without torsion on the main
diagonal.
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Example

Let p be a prime integer and let R = Z[1/p].
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Example

Let p be a prime integer and let R = Z[1/p]. Then
+ph
_ o Ef,
B,.(R) = . tki,...,kn €2,
+pPn

Af(R) = Hié’k ﬂ keZ, re Z[l/p]}.
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Example

Let p be a prime integer and let R = Z[1/p]. Then
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Baumslag—Solitar group

BS(1,p) = (a,b | bab™! = aP)
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Baumslag—Solitar group

BS(1,p) = (a,b | bab™! = aP)

is isomorphic to

A @l/p) = {(% 1) Irezli/p), kez}.
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Generalized lamplighter groups L,,, for n € Z>2

Ly, =CllZ

where (', denotes the cyclic group of order n.
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Generalized lamplighter groups L,,, for n € Z>2

Ly, =CllZ

where (', denotes the cyclic group of order n.
Ly, has the (infinite) presentation

Lo = (a,b| {a", [pFab ", bab™"] : k,1 € Z}).
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Generalized lamplighter groups L,,, for n € Z>2

Ly, =CllZ

where (', denotes the cyclic group of order n.
Ly, has the (infinite) presentation

Lo = (a,b| {a", [pFab ", bab™"] : k,1 € Z}).

One can show that £, is isomorphic to

A (F [t t71) = {(4 {) | F € Fplt,t ™), k€ 2} .
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3  Outline

© Which of those groups have R..?
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Question

For which integral domains R the groups

have R..?
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Let
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Let

B,.(R) =U,(R) x D, (R),

where D,,(R) < GL,(R) is the group of invertible diagonal matrices.
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Let

B,.(R) =U,(R) x D, (R),

where D,,(R) < GL,(R) is the group of invertible diagonal matrices.

Fact
Let K be a field, then U,,(K) is characteristic on B,,(K).
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However, U,,(R) is not characteristic in B,,(R) in general.
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However, U,,(R) is not characteristic in B,,(R) in general.

Example

Let R be the integral domain R = Z[t].
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However, U,,(R) is not characteristic in B,,(R) in general.

Example

Let R be the integral domain R = Z[t|. Consider the homomorphism
€: (Z[t]7 +) —Cy = {_17 1}

SN it > (1) X0 fi,

17 Reidemeister classes of soluble matrix groups



Example

Usq(Z[t)) is not invariant under the automorphism

¢ : Ba(Z]t])

62—

Bo(Z[t])

(6(7“) 0 ) _ <u 1")
0 e(r) 0 v
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Example

In fact
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Although U, (R) is not characteristic in B,,(R), we have the following.
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Although U, (R) is not characteristic in B,,(R), we have the following.
Proposition (L. & Santos Rego)

For all n € N>o, if R is an integral domain, then the subgroup U, (R)
is characteristic in PB,,(R) and PB; (R).
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Although U, (R) is not characteristic in B,,(R), we have the following.

Proposition (L. & Santos Rego)

For all n € N>o, if R is an integral domain, then the subgroup U, (R)
is characteristic in PB,,(R) and PB; (R).

Af(R) & AET(R)

In particular, Us(R) is characteristic on Aff(R) = PB2(R) and on
AffT(R).
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As a consequence, each automorphism 1 of the group

Af(R) = Uy(R) % {[g ﬂ :ueRX}

induces an automorphism

i € Aut(Aff(R)/Us(R)).
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Theorem (L., & Y. Santos)

Let R be an integral domain. Given ) € Aut(Aff(R)), denote by )
the automorphism induced by 1) on Aff(R)/Usz(R).

22 Reidemeister classes of soluble matrix groups KU LEUVEN m‘



Theorem (L., & Y. Santos)

Let R be an integral domain. Given ) € Aut(Aff(R)), denote by )
the automorphism induced by 1) on Aff(R)/Usz(R).

If R() = oo for all € Aut(Aff(R)), then Aff(R), PB,(R) and
B,.(R) have property R, for all n > 2.
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Theorem (L., & Y. Santos)

Let R be an integral domain. Given 1) € Aut(Aff™(R)), denote by
the automorphism induced by 1) on AffT(R)/Us(R).

23 Reidemeister classes of soluble matrix groups KU LEUVEN m‘



Theorem (L., & Y. Santos)

Let R be an integral domain. Given 1) € Aut(Aff™(R)), denote by
the automorphism induced by 1) on AffT(R)/Us(R).

If R(D) = oo for all 1 € Aut(AfE*(R)), then AT (R), PB (R) and
B,'(R) have property Ry, for all n > 2.
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Example

If R = Z[1/p], the groups
B, (R),PB;(R) and , AffT(R)

all have Ry, for n > 2.
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Example

Let v be an automorphism of
AfF*(Z[1/p]) = U2(Z[1/p]) x D1(Z[1/p)),

where

Di(Z[1/p]) = {[%k ﬂ ke Z}.
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Example

Let v be an automorphism of

AFT(Z[1/p]) = Uy(Z[1/p)) x D1(Z[1/p),

Di(Z[1/p]) = {[%k ﬂ e Z}.

Then the induced automorphism 1) on

where

AT (Z[1/p])/Un(Z[1/p]) = Z

satisfies R(1)) = oo.
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Example

Let v be an automorphism of

AFT(Z[1/p]) = Uy(Z[1/p)) x D1(Z[1/p),

Di(Z[1/p]) = {[%k ﬂ e Z}.

Then the induced automorphism 1) on

where

AT (Z[1/p])/Un(Z[1/p]) = Z

satisfies R(1)) = oc.

More precisely, we show that 1) (as a an element of GL1(Z)) has
eigenvalue 1, i.e. is the identity.
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Example

Fact: We may assume that

(D1(Z[1/p])) € D1(Z[1/p])
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Example

Fact: We may assume that

(D1(Z[1/p])) € D1(Z[1/p])

Thus, there is A\ € Z such that

(5 3) =[5 3]
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Example

Fact: We may assume that

(D1(Z[1/p])) € D1(Z[1/p])

Thus, there is A\ € Z such that

(5 3) =[5 3]

There is r € Z[1/p] such that
11 1 r
(b )b i)
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Example

Using the equality

SEEIHEE
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Example

Using the equality

SEEIHEE

we see that
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Analogously, one can show that

B..(Z[1/p]), (n = 2), AfE(Z[1/p]), PB.(Z[1/p])

all have R..
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Analogously, one can show that

B,(Z[1/m]), AfE(Z[1/m]), PBy(Z[1/m]),
B, (Z[1/m]), AET(Z[1/m]), PB,;(Z[1/m])

all have R..
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4  Qutline

@O Automorphisms of Rings
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We now introduce another way to determine whether B,,(R) and
PB,,(R) (n > 5) have R using automorphisms of rings.
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Given a ring automorphism a € Autring(R)
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Given a ring automorphism o € Autging(R), consider the
automorphisms on the underlying additive group (R, +).
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Given a ring automorphism o € Autging(R), consider the
automorphisms on the underlying additive group (R, +).

Qadd € Aut(R, +); Qadd (1) = a(r),
Ta € Aut((R,+) X (R, +)); 7alr,s) = (a(s), a(r)).
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Theorem (L., & Y. Santos)

Let R be an integral domain with a finitely generated group of units
(RX ) ) :
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Theorem (L., & Y. Santos)

Let R be an integral domain with a finitely generated group of units
(R*,-).

Assume further that both R(a,q4) and R(1,) are infinite for all
a € Autring(R).

32 Reidemeister classes of soluble matrix groups



Theorem (L., & Y. Santos)

Let R be an integral domain with a finitely generated group of units
(R*,-).

Assume further that both R(a,q4) and R(1,) are infinite for all
a € Autring(R).

Then the groups B, (R) and PB,,(R) have R, for all n > 5.
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Example

Let R = Z|t], the ring of integer polynomials.
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Example

Let R = Z|t], the ring of integer polynomials. Then

R(aadd) = 00 = R(Ta), Vo € AutRing(R).
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Example

Let R = Z|t], the ring of integer polynomials. Then

R(aadd) = 00 = R(Ta), Vo € AutRing(R).

In particular, B, (R) and PB,,(R) have R, when n > 5.
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Example
Every o € Autring(Z][t]) is of the form
d . d .
(07 <Z fitl> = Z fi(at < b)z,
i=0 i=0

for some a € {£1} and b € Z.
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Example

Claim. Ifi > j, then [t*!]a,,, # [t%] 0y
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Example
Claim. Ifi > j, then [t*], ., # [t*]a..-

In fact, [t*"a,,y = [t¥]a.,, if and only if there exists

h(t) = i hot € Z|[t]
(=0
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Example
Claim. Ifi > j, then [t*!]a,,, # [t%] 0y

In fact, [t*"a,,y = [t¥]a.,, if and only if there exists
d
h(t) = het' € Z[t]
=0

such that t2 = h(t) 4+ t2 — a,qq(h(t))
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Example
Claim. Ifi > j, then [t*!]a,,, # [t%] 0y

In fact, [t*"a,,y = [t¥]a.,, if and only if there exists
d
h(t) = het' € Z[t]
=0

such that t% = h(t) + t2 — agq(h(t)), that is,

d d
2 — % =" ht" = hy(at + D)’
/=0

=0
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Example

We can show that the degree d of h(t) cannot be larger than t*,

otherwise .

d
2 — 2 =" het' = hy(at + b)-. (1)
=0 £=0

does not hold.
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Example

We can show that the degree d of h(t) cannot be larger than t*,

otherwise .

d
2 — 2 =" het' = hy(at + b)-. (1)
=0 £=0

does not hold.

The leading coefficient of the LHS is 1, whereas on the RHS the
leading coefficient is

hzl' — hgia% = (1 — a2i)h2i =0.
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Example

We can show that the degree d of h(t) cannot be larger than t*,

otherwise .

d
2 — 2 =" het' = hy(at + b)-. (1)
=0 £=0

does not hold.

The leading coefficient of the LHS is 1, whereas on the RHS the
leading coefficient is

hgi — hgia% = (1 — a2i)h2i =0.

Thus, no h(t) € Z[t] satisfies (1).
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Example

Showing that R(1,) = oo is similar to the previous case.
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Example
Showing that R(1,) = oo is similar to the previous case.

Since R(aaqq9) = 00 and R(14) = o0, the previous theorem assures
that
B,,(Z[t]) and PB,(Z1)

have Ry, for all n > 5.
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5  Outline

@ Some examples in positive characteristic
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Proposition

Let p be prime.
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Proposition

Let p be prime. If R = TF|[t],

B2(R) and Aff(R) do not have R.
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Proposition

Let p be prime. If R = TF|[t],

B2(R) and Aff(R) do not have R.

Thus, we cannot apply the first theorem to

B,.(R),PB,(R).
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However, the second theorem can be applied.
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However, the second theorem can be applied.
Proposition

The groups
B, (Fp[t]), PBn (Fyp[t])

have R, forn > 5.
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However, the second theorem can be applied.
Proposition

The groups
B, (Fp[t]), PBn (Fyp[t])

have R, forn > 5.

We also have
Proposition

The groups
B, (Fp[t, t 7)), PB,,(Fpt,t 1)

have Ry, forn > 5.
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Let ¢ = pf be a prime power.

41 Reidemeister classes of soluble matrix groups KU LEUVEN



Let ¢ = pf be a prime power. Let
f(t) € Fplt] C Fylt]

be a non-constant monic polynomial which is irreducible over Fy, O IF),.
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Let ¢ = pf be a prime power. Let
f(t) € Fplt] C Fylt]

be a non-constant monic polynomial which is irreducible over Fy, O IF),.
Using the second theorem, we can show the following.

Proposition

For R =TF,[t,t=%, f(t)~1], the groups
{B}(R),PB(R), Aff"(R) | n € N>y},

have R.
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Thank you!
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