

Twisted conjugacy in soluble arithmetic groups

In collaboration with Y. Santos Rego

Paula Lins KU Leuven Kulak 18th of February 2021

1 Outline

1 Twisted conjugacy and R_{∞}

2 Upper triangular matrix groups over R

- **3** Which of those groups have R_{∞} ?
- Automorphisms of Rings
- **5** Some examples in positive characteristic

1 Twisted conjugacy and R_{∞}

Given a group G and an automorphism $\varphi \in Aut(G)$, the $(\varphi$ -)*Reidemeister class* of $g \in G$ is

$$[g]_{\varphi} = \{ hg\varphi(h)^{-1} \mid h \in G \}.$$

1 Twisted conjugacy and R_{∞}

Given a group G and an automorphism $\varphi \in Aut(G)$, the $(\varphi$ -)*Reidemeister class* of $g \in G$ is

$$[g]_{\varphi} = \{ hg\varphi(h)^{-1} \mid h \in G \}.$$

Reidemeister number:

$$R(\varphi) = |\{[g]_{\varphi} \mid g \in G\}|.$$

A group G has property R_∞ if, for all $\varphi\in {\rm Aut}(G),$ one has $R(\varphi)=\infty.$

 \mathbb{Z} is abelian and infinite so that $R(id) = \infty$.

 \mathbb{Z} is abelian and infinite so that $R(id) = \infty$. However, R(-id) = 2:

 $[0]_{-\mathsf{id}} = \{\mathsf{even numbers}\}, \ \ [1]_{-\mathsf{id}} = \{\mathsf{odd numbers}\}.$

$$BS(1,p) = \langle a, b \mid aba^{-1} = b^p \rangle;$$

$$BS(1,p) = \langle a, b \mid aba^{-1} = b^p \rangle;$$

(Taback & Wong) Generalized solvable Baumslag-Solitar groups;

$$BS(1,p) = \langle a,b \mid aba^{-1} = b^p \rangle;$$

(Taback & Wong) Generalized solvable Baumslag-Solitar groups;
(Gonçalves & Wong) Lamplighter groups C_p ≥ Z for p = 2 or 3;

$$BS(1,p) = \langle a, b \mid aba^{-1} = b^p \rangle;$$

(Taback & Wong) Generalized solvable Baumslag-Solitar groups;

- (Gonçalves & Wong) Lamplighter groups $C_p \wr \mathbb{Z}$ for p = 2 or 3;
- (Dekimpe, Gonçalves, Wong and others) Certain (but not all) polycylic groups;

$$BS(1,p) = \langle a, b \mid aba^{-1} = b^p \rangle;$$

- (Taback & Wong) Generalized solvable Baumslag-Solitar groups;
- (Gonçalves & Wong) Lamplighter groups $C_p \wr \mathbb{Z}$ for p = 2 or 3;
- (Dekimpe, Gonçalves, Wong and others) Certain (but not all) polycylic groups;
- (Nasybullov) Groups of unitriangular matrices over certain integral domains as long as their nilpotency class is large enough.

Goal

Put previous soluble examples in a common framework or generalize them if possible.

Goal

Put previous soluble examples in a common framework or generalize them if possible.

Idea

Investigate upper triangular matrices over integral domains.

Goal

Put previous soluble examples in a common framework or generalize them if possible.

Idea

Investigate upper triangular matrices over integral domains. Develop methods to determine R_∞ depending on base ring.

2 Outline

- $lacksymbol{1}$ Twisted conjugacy and R_∞
- **2** Upper triangular matrix groups over R
- **3** Which of those groups have R_{∞} ?
- 4 Automorphisms of Rings
- **5** Some examples in positive characteristic

Throughout, ${\boldsymbol R}$ is an integral domain.

Throughout, R is an integral domain.

Consider the group

$$\mathbf{B}_{n}(R) = \begin{bmatrix} * & * & * & * & * \\ & * & \ddots & * & * \\ & & \ddots & \ddots & * \\ & & & \ddots & * \\ & & & & \ddots & * \\ & & & & & * \end{bmatrix} \leq \mathsf{GL}_{n}(R).$$

Some variations

▶ Projective $\mathbb{P}\mathbf{B}_n(R)$

$$\mathbb{P}\mathbf{B}_n(R) = \frac{\mathbf{B}_n(R)}{Z(\mathbf{B}_n(R))},$$

Some variations

▶ Projective $\mathbb{P}\mathbf{B}_n(R)$

$$\mathbb{P}\mathbf{B}_n(R) = \frac{\mathbf{B}_n(R)}{Z(\mathbf{B}_n(R))},$$

Affine group

$$\mathbb{A}\mathrm{ff}(R) = \begin{bmatrix} * & * \\ 0 & 1 \end{bmatrix} \leq \mathsf{GL}_2(R).$$

Some variations

• Projective $\mathbb{P}\mathbf{B}_n(R)$

$$\mathbb{P}\mathbf{B}_n(R) = \frac{\mathbf{B}_n(R)}{Z(\mathbf{B}_n(R))},$$

Affine group
$$\mathbb{A}\mathrm{ff}(R) = \begin{bmatrix} * & * \\ 0 & 1 \end{bmatrix} \leq \mathsf{GL}_2(R).$$

Similarly $B_n^+(R),$ $\mathbb{A}\mathrm{ff}^+(R)$ and $\mathbb{P}B_n^+(R)$ without torsion on the main diagonal.

Let p be a prime integer and let $R = \mathbb{Z}[1/p]$.

Let p be a prime integer and let $R = \mathbb{Z}[1/p]$. Then

$$\mathbf{B}_{n}(R) = \left\{ \begin{bmatrix} \pm p^{k_{1}} & & \\ & \ddots & \\ & & \pm p^{k_{n}} \end{bmatrix} : k_{1}, \dots, k_{n} \in \mathbb{Z} \right\},$$

$$\mathbb{A}\mathrm{ff}(R) = \left\{ \begin{bmatrix} \pm p^{k} & r \\ 0 & 1 \end{bmatrix} : k \in \mathbb{Z}, \ r \in \mathbb{Z}[1/p] \right\}.$$

Let p be a prime integer and let $R = \mathbb{Z}[1/p]$. Then

$$B_n^+(R) = \left\{ \begin{bmatrix} p^{k_1} & & \\ & \ddots & \\ & & p^{k_n} \end{bmatrix} : k_1, \dots, k_n \in \mathbb{Z} \right\},$$

Aff⁺(R) = $\left\{ \begin{bmatrix} p^k & r \\ 0 & 1 \end{bmatrix} : k \in \mathbb{Z}, r \in \mathbb{Z}[1/p] \right\}.$

11 Reidemeister classes of soluble matrix groups

Baumslag–Solitar group

$$BS(1,p) = \langle a, b \mid bab^{-1} = a^p \rangle$$

Baumslag–Solitar group

$$BS(1,p) = \langle a, b \mid bab^{-1} = a^p \rangle$$

is isomorphic to

$$\mathbb{A}\mathrm{ff}^+(\mathbb{Z}[1/p]) = \left\{ \left(\begin{smallmatrix} p^k & r \\ 0 & 1 \end{smallmatrix} \right) \mid r \in \mathbb{Z}[1/p], \, k \in \mathbb{Z} \right\}.$$

Generalized lamplighter groups \mathcal{L}_n , for $n \in \mathbb{Z}_{\geq 2}$

$$\mathcal{L}_n = C_n \wr \mathbb{Z}$$

where C_n denotes the cyclic group of order n.

Generalized lamplighter groups \mathcal{L}_n , for $n \in \mathbb{Z}_{\geq 2}$

$$\mathcal{L}_n = C_n \wr \mathbb{Z}$$

where C_n denotes the cyclic group of order n. \mathcal{L}_n has the (infinite) presentation

$$\mathcal{L}_n \cong \langle a, b \mid \{a^n, [b^k a b^{-k}, b^l a b^{-l}] : k, l \in \mathbb{Z}\} \rangle.$$

Generalized lamplighter groups \mathcal{L}_n , for $n \in \mathbb{Z}_{\geq 2}$

$$\mathcal{L}_n = C_n \wr \mathbb{Z}$$

where C_n denotes the cyclic group of order n. \mathcal{L}_n has the (infinite) presentation

$$\mathcal{L}_n \cong \langle a, b \mid \{a^n, [b^k a b^{-k}, b^l a b^{-l}] : k, l \in \mathbb{Z}\} \rangle.$$

One can show that \mathcal{L}_p is isomorphic to

$$\mathbb{A}\mathrm{ff}^+(\mathbb{F}_p[t,t^{-1}]) = \left\{ \begin{pmatrix} t^k & f \\ 0 & 1 \end{pmatrix} \mid f \in \mathbb{F}_p[t,t^{-1}], \, k \in \mathbb{Z} \right\}.$$

3 Outline

 $lacksymbol{1}$ Twisted conjugacy and R_∞

2 Upper triangular matrix groups over R

3 Which of those groups have R_{∞} ?

Automorphisms of Rings

5 Some examples in positive characteristic

Question

For which integral domains ${\boldsymbol R}$ the groups

 $\mathbf{B}_n(R)$, Aff(R), $\mathbb{P}\mathbf{B}_n(R)$, $B_n^+(R)$, Aff $^+(R)$, $\mathbb{P}B_n^+(R)$

have R_{∞} ?

Let

$$\mathbf{U}_n(R) = \begin{bmatrix} 1 & * & * \\ & \ddots & * \\ & & 1 \end{bmatrix} \le \mathsf{GL}_n(R).$$

Let

$$\mathbf{U}_n(R) = \begin{bmatrix} 1 & * & * \\ & \ddots & * \\ & & 1 \end{bmatrix} \leq \mathsf{GL}_n(R).$$

$$\mathbf{B}_n(R) = \mathbf{U}_n(R) \rtimes \mathbf{D}_n(R),$$

where $\mathbf{D}_n(R) \leq \mathsf{GL}_n(R)$ is the group of invertible diagonal matrices.

Let

$$\mathbf{U}_n(R) = \begin{bmatrix} 1 & * & * \\ & \ddots & * \\ & & 1 \end{bmatrix} \le \mathsf{GL}_n(R).$$

$$\mathbf{B}_n(R) = \mathbf{U}_n(R) \rtimes \mathbf{D}_n(R),$$

where $\mathbf{D}_n(R) \leq \mathsf{GL}_n(R)$ is the group of invertible diagonal matrices.

Fact

Let \mathbb{K} be a field, then $\mathbf{U}_n(\mathbb{K})$ is characteristic on $\mathbf{B}_n(\mathbb{K})$.

However, $\mathbf{U}_n(R)$ is *not* characteristic in $\mathbf{B}_n(R)$ in general.

However, $\mathbf{U}_n(R)$ is *not* characteristic in $\mathbf{B}_n(R)$ in general.

Example

Let R be the integral domain $R = \mathbb{Z}[t]$.

However, $\mathbf{U}_n(R)$ is *not* characteristic in $\mathbf{B}_n(R)$ in general.

Example

Let R be the integral domain $R = \mathbb{Z}[t]$. Consider the homomorphism

$$\varepsilon : (\mathbb{Z}[t], +) \longrightarrow C_2 = \{-1, 1\}$$
$$\sum_{i=0}^{N} f_i t^i \longmapsto (-1)^{\sum_{i=0}^{N} f_i}.$$

$\mathbf{U}_2(\mathbb{Z}[t])$ is not invariant under the automorphism

$$\varphi : \mathbf{B}_2(\mathbb{Z}[t]) \longrightarrow \mathbf{B}_2(\mathbb{Z}[t])$$
$$\begin{pmatrix} u & r \\ 0 & v \end{pmatrix} \longmapsto \begin{pmatrix} \varepsilon(r) & 0 \\ 0 & \varepsilon(r) \end{pmatrix} \cdot \begin{pmatrix} u & r \\ 0 & v \end{pmatrix}$$

٠

In fact

$$\varphi \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \varepsilon(t) & 0 \\ 0 & \varepsilon(t) \end{pmatrix} \cdot \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & -t \\ 0 & -1 \end{pmatrix} \notin \mathbf{U}_2(\mathbb{Z}[t]).$$

19 Reidemeister classes of soluble matrix groups

Although $U_n(R)$ is not characteristic in $B_n(R)$, we have the following.

Although $U_n(R)$ is not characteristic in $B_n(R)$, we have the following.

Proposition (L. & Santos Rego)

For all $n \in \mathbb{N}_{\geq 2}$, if R is an integral domain, then the subgroup $\mathbf{U}_n(R)$ is characteristic in $\mathbb{P}\mathbf{B}_n(R)$ and $\mathbb{P}B_n^+(R)$.

Although $U_n(R)$ is not characteristic in $B_n(R)$, we have the following.

Proposition (L. & Santos Rego)

For all $n \in \mathbb{N}_{\geq 2}$, if R is an integral domain, then the subgroup $\mathbf{U}_n(R)$ is characteristic in $\mathbb{P}\mathbf{B}_n(R)$ and $\mathbb{P}B_n^+(R)$.

$\operatorname{Aff}(R)$ & $\operatorname{Aff}^+(R)$

In particular, $\mathbf{U}_2(R)$ is characteristic on $\mathbb{A}\mathrm{ff}(R) = \mathbb{P}\mathbf{B}_2(R)$ and on $\mathbb{A}\mathrm{ff}^+(R)$.

As a consequence, each automorphism ψ of the group

$$\mathbb{A}\mathrm{ff}(R) \cong \mathbf{U}_2(R) \rtimes \left\{ \begin{bmatrix} u & 0 \\ 0 & 1 \end{bmatrix} : u \in R^{\times} \right\}$$

induces an automorphism

 $\overline{\psi} \in \operatorname{Aut}(\operatorname{Aff}(R)/\mathbf{U}_2(R)).$

Let R be an integral domain. Given $\psi \in Aut(Aff(R))$, denote by $\overline{\psi}$ the automorphism induced by ψ on $Aff(R)/\mathbf{U}_2(R)$.

Let R be an integral domain. Given $\psi \in Aut(Aff(R))$, denote by $\overline{\psi}$ the automorphism induced by ψ on $Aff(R)/\mathbf{U}_2(R)$.

If $R(\overline{\psi}) = \infty$ for all $\psi \in Aut(Aff(R))$, then Aff(R), $\mathbb{P}\mathbf{B}_n(R)$ and $\mathbf{B}_n(R)$ have property R_∞ for all $n \ge 2$.

Let R be an integral domain. Given $\psi \in Aut(Aff^+(R))$, denote by $\overline{\psi}$ the automorphism induced by ψ on $Aff^+(R)/U_2(R)$.

Let R be an integral domain. Given $\psi \in Aut(Aff^+(R))$, denote by $\overline{\psi}$ the automorphism induced by ψ on $Aff^+(R)/U_2(R)$.

If $R(\overline{\psi}) = \infty$ for all $\psi \in Aut(Aff^+(R))$, then $Aff^+(R)$, $\mathbb{P}\mathbf{B}_n^+(R)$ and $\mathbf{B}_n^+(R)$ have property R_∞ for all $n \ge 2$.

If $R = \mathbb{Z}[1/p]$, the groups

 $\mathbf{B}_n^+(R), \mathbb{P}B_n^+(R)$ and $, \mathbb{A}\mathrm{ff}^+(R)$

all have R_{∞} for $n \geq 2$.

Let ψ be an automorphism of

$$\operatorname{Aff}^+(\mathbb{Z}[1/p]) \cong \mathbf{U}_2(\mathbb{Z}[1/p]) \rtimes \mathcal{D}_1(\mathbb{Z}[1/p])$$

where

$$\mathcal{D}_1(\mathbb{Z}[1/p]) = \left\{ \begin{bmatrix} p^k & 0\\ 0 & 1 \end{bmatrix} : k \in \mathbb{Z} \right\}.$$

Let ψ be an automorphism of

$$\operatorname{Aff}^+(\mathbb{Z}[1/p]) \cong \mathbf{U}_2(\mathbb{Z}[1/p]) \rtimes \mathcal{D}_1(\mathbb{Z}[1/p]),$$

where

$$\mathcal{D}_1(\mathbb{Z}[1/p]) = \left\{ \begin{bmatrix} p^k & 0\\ 0 & 1 \end{bmatrix} : k \in \mathbb{Z} \right\}.$$

Then the induced automorphism $\overline{\psi}$ on

 $\operatorname{Aff}^+(\mathbb{Z}[1/p])/\mathbf{U}_n(\mathbb{Z}[1/p]) \cong \mathbb{Z}$

satisfies $R(\overline{\psi}) = \infty$.

Let ψ be an automorphism of

$$\operatorname{Aff}^+(\mathbb{Z}[1/p]) \cong \mathbf{U}_2(\mathbb{Z}[1/p]) \rtimes \mathcal{D}_1(\mathbb{Z}[1/p]),$$

where

$$\mathcal{D}_1(\mathbb{Z}[1/p]) = \left\{ \begin{bmatrix} p^k & 0\\ 0 & 1 \end{bmatrix} : k \in \mathbb{Z} \right\}.$$

Then the induced automorphism $\overline{\psi}$ on

$$\operatorname{Aff}^+(\mathbb{Z}[1/p])/\mathbf{U}_n(\mathbb{Z}[1/p]) \cong \mathbb{Z}$$

satisfies $R(\overline{\psi}) = \infty$.

More precisely, we show that $\overline{\psi}$ (as a an element of $GL_1(\mathbb{Z})$) has eigenvalue 1, i.e. is the identity.

.

Fact: We may assume that

 $\psi(\mathcal{D}_1(\mathbb{Z}[1/p])) \subseteq \mathcal{D}_1(\mathbb{Z}[1/p])$

.

Fact: We may assume that

 $\psi(\mathcal{D}_1(\mathbb{Z}[1/p])) \subseteq \mathcal{D}_1(\mathbb{Z}[1/p])$

Thus, there is $\lambda \in \mathbb{Z}$ such that

$$\psi\left(\begin{bmatrix}p&0\\0&1\end{bmatrix}\right) = \begin{bmatrix}p^{\lambda}&0\\0&1\end{bmatrix}$$

٠

Fact: We may assume that

 $\psi(\mathcal{D}_1(\mathbb{Z}[1/p])) \subseteq \mathcal{D}_1(\mathbb{Z}[1/p])$

Thus, there is $\lambda \in \mathbb{Z}$ such that

$$\psi\left(\begin{bmatrix}p & 0\\0 & 1\end{bmatrix}\right) = \begin{bmatrix}p^{\lambda} & 0\\0 & 1\end{bmatrix}$$

There is $r \in \mathbb{Z}[1/p]$ such that

$$\psi\left(\begin{bmatrix}1 & 1\\ 0 & 1\end{bmatrix}\right) = \begin{bmatrix}1 & r\\ 0 & 1\end{bmatrix}$$

Using the equality

$$\begin{bmatrix} 1 & p \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} p & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p & 0 \\ 0 & 1 \end{bmatrix}^{-1},$$

Using the equality

$$\begin{bmatrix} 1 & p \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} p & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p & 0 \\ 0 & 1 \end{bmatrix}^{-1},$$

we see that

$$\begin{bmatrix} 1 & rp \\ 0 & 1 \end{bmatrix} = \psi \left(\begin{bmatrix} 1 & p \\ 0 & 1 \end{bmatrix} \right)$$
$$= \psi \left(\begin{bmatrix} p & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p & 0 \\ 0 & 1 \end{bmatrix}^{-1} \right)$$
$$= \begin{bmatrix} 1 & rp^{\lambda} \\ 0 & 1 \end{bmatrix}.$$

Analogously, one can show that

 $\mathbf{B}_n(\mathbb{Z}[1/p]), (n \ge 2), \text{ Aff}(\mathbb{Z}[1/p]), \mathbb{P}\mathbf{B}_n(\mathbb{Z}[1/p])$

all have R_{∞} .

Analogously, one can show that

$\mathbf{B}_{n}(\mathbb{Z}[1/m]), \ \operatorname{Aff}(\mathbb{Z}[1/m]), \ \mathbb{P}\mathbf{B}_{n}(\mathbb{Z}[1/m]), \\ \mathbf{B}_{n}^{+}(\mathbb{Z}[1/m]), \ \operatorname{Aff}^{+}(\mathbb{Z}[1/m]), \ \mathbb{P}B_{n}^{+}(\mathbb{Z}[1/m])$

all have R_{∞} .

4 Outline

1 Twisted conjugacy and R_∞

2 Upper triangular matrix groups over R

3 Which of those groups have R_{∞} ?

4 Automorphisms of Rings

5 Some examples in positive characteristic

We now introduce another way to determine whether $\mathbf{B}_n(R)$ and $\mathbb{P}\mathbf{B}_n(R)$ $(n \ge 5)$ have R_{∞} using automorphisms of rings.

Given a *ring* automorphism $\alpha \in Aut_{Ring}(R)$

Given a *ring* automorphism $\alpha \in Aut_{Ring}(R)$, consider the automorphisms on the underlying additive group (R, +).

Given a ring automorphism $\alpha \in Aut_{Ring}(R)$, consider the automorphisms on the underlying additive group (R, +).

$$\begin{aligned} \alpha_{\mathsf{add}} &\in \operatorname{Aut}(R, +); & \alpha_{\mathsf{add}}(r) = \alpha(r), \\ \tau_{\alpha} &\in \operatorname{Aut}((R, +) \times (R, +)); & \tau_{\alpha}(r, s) = (\alpha(s), \alpha(r)). \end{aligned}$$

Let R be an integral domain with a finitely generated group of units $(R^{\times},\cdot).$

Let R be an integral domain with a finitely generated group of units $(R^{\times},\cdot).$

Assume further that both $R(\alpha_{add})$ and $R(\tau_{\alpha})$ are infinite for all $\alpha \in Aut_{Ring}(R)$.

Let R be an integral domain with a finitely generated group of units (R^{\times}, \cdot) .

Assume further that both $R(\alpha_{add})$ and $R(\tau_{\alpha})$ are infinite for all $\alpha \in Aut_{Ring}(R)$.

Then the groups $\mathbf{B}_n(R)$ and $\mathbb{P}\mathbf{B}_n(R)$ have R_∞ for all $n \geq 5$.

Let $R = \mathbb{Z}[t]$, the ring of integer polynomials.

Let $R = \mathbb{Z}[t]$, the ring of integer polynomials. Then

 $R(\alpha_{\textit{add}}) = \infty = R(\tau_{\alpha}), \; \forall \alpha \in \operatorname{Aut}_{\mathsf{Ring}}(R).$

Let $R = \mathbb{Z}[t]$, the ring of integer polynomials. Then $R(\alpha_{add}) = \infty = R(\tau_{\alpha}), \ \forall \alpha \in \operatorname{Aut}_{\mathsf{Ring}}(R).$

In particular, $\mathbf{B}_n(R)$ and $\mathbb{P}\mathbf{B}_n(R)$ have R_{∞} when $n \geq 5$.

Every $\alpha \in \operatorname{Aut}_{\mathsf{Ring}}(\mathbb{Z}[t])$ is of the form

$$\alpha\left(\sum_{i=0}^d f_i t^i\right) = \sum_{i=0}^d f_i (at+b)^i,$$

for some $a \in \{\pm 1\}$ and $b \in \mathbb{Z}$.

Claim. If i > j, then $[t^{2i}]_{\alpha_{add}} \neq [t^{2j}]_{\alpha_{add}}$.

Claim. If i > j, then $[t^{2i}]_{\alpha_{add}} \neq [t^{2j}]_{\alpha_{add}}$. In fact, $[t^{2i}]_{\alpha_{add}} = [t^{2j}]_{\alpha_{add}}$ if and only if there exists

$$h(t) = \sum_{\ell=0}^{d} h_{\ell} t^{\ell} \in \mathbb{Z}[t]$$

Claim. If i > j, then $[t^{2i}]_{\alpha_{add}} \neq [t^{2j}]_{\alpha_{add}}$. In fact, $[t^{2i}]_{\alpha_{add}} = [t^{2j}]_{\alpha_{add}}$ if and only if there exists

$$h(t) = \sum_{\ell=0}^{d} h_{\ell} t^{\ell} \in \mathbb{Z}[t]$$

such that
$$t^{2i} = h(t) + t^{2j} - \alpha_{add}(h(t))$$

Claim. If i > j, then $[t^{2i}]_{\alpha_{add}} \neq [t^{2j}]_{\alpha_{add}}$. In fact, $[t^{2i}]_{\alpha_{add}} = [t^{2j}]_{\alpha_{add}}$ if and only if there exists

$$h(t) = \sum_{\ell=0}^{d} h_{\ell} t^{\ell} \in \mathbb{Z}[t]$$

such that $t^{2i} = h(t) + t^{2j} - \alpha_{\rm add}(h(t)) {\rm , \ that \ is,}$

$$t^{2i} - t^{2j} = \sum_{\ell=0}^{d} h_{\ell} t^{\ell} - \sum_{\ell=0}^{d} h_{\ell} (at+b)^{\ell}.$$

We can show that the degree d of h(t) cannot be larger than $t^{2i},$ otherwise

$$t^{2i} - t^{2j} = \sum_{\ell=0}^{d} h_{\ell} t^{\ell} - \sum_{\ell=0}^{d} h_{\ell} (at+b)^{\ell}.$$
 (1)

does not hold.

We can show that the degree d of h(t) cannot be larger than t^{2i} , otherwise

$$t^{2i} - t^{2j} = \sum_{\ell=0}^{d} h_{\ell} t^{\ell} - \sum_{\ell=0}^{d} h_{\ell} (at+b)^{\ell}.$$
 (1)

does not hold.

The leading coefficient of the LHS is 1, whereas on the RHS the leading coefficient is

$$h_{2i} - h_{2i}a^{2i} = (1 - a^{2i})h_{2i} = 0.$$

We can show that the degree d of h(t) cannot be larger than t^{2i} , otherwise

$$t^{2i} - t^{2j} = \sum_{\ell=0}^{d} h_{\ell} t^{\ell} - \sum_{\ell=0}^{d} h_{\ell} (at+b)^{\ell}.$$
 (1)

does not hold.

The leading coefficient of the LHS is 1, whereas on the RHS the leading coefficient is

$$h_{2i} - h_{2i}a^{2i} = (1 - a^{2i})h_{2i} = 0.$$

Thus, no $h(t) \in \mathbb{Z}[t]$ satisfies (1).

Showing that $R(\tau_{\alpha}) = \infty$ is similar to the previous case.

Showing that $R(\tau_{\alpha}) = \infty$ is similar to the previous case.

Since $R(\alpha_{\rm add})=\infty$ and $R(\tau_{\alpha})=\infty,$ the previous theorem assures that

 $\mathbf{B}_n(\mathbb{Z}[t])$ and $\mathbb{P}\mathbf{B}_n(\mathbb{Z}[t])$

have R_{∞} for all $n \geq 5$.

5 Outline

 $lacksymbol{1}$ Twisted conjugacy and R_∞

2 Upper triangular matrix groups over R

3 Which of those groups have R_{∞} ?

Automorphisms of Rings

5 Some examples in positive characteristic

Proposition

Let p be prime.

Proposition

Let p be prime. If $R=\mathbb{F}_p[t],$ $\mathbf{B}_2(R) \text{ and } \mathbb{A}\mathrm{ff}(R) \text{ do not have } R_\infty.$

Proposition

Let p be prime. If $R=\mathbb{F}_p[t],$ $\mathbf{B}_2(R) \text{ and } \mathbb{A}\mathrm{ff}(R) \text{ do not have } R_\infty.$

Thus, we cannot apply the first theorem to

 $\mathbf{B}_n(R), \mathbb{P}\mathbf{B}_n(R).$

However, the second theorem can be applied.

However, the second theorem can be applied.

Proposition

The groups

 $\mathbf{B}_n(\mathbb{F}_p[t]), \mathbb{P}\mathbf{B}_n(\mathbb{F}_p[t])$

have R_{∞} for $n \geq 5$.

However, the second theorem can be applied.

Proposition

The groups

 $\mathbf{B}_n(\mathbb{F}_p[t]), \mathbb{P}\mathbf{B}_n(\mathbb{F}_p[t])$

have R_{∞} for $n \geq 5$.

We also have

Proposition

The groups

$$\mathbf{B}_n(\mathbb{F}_p[t,t^{-1}]), \mathbb{P}\mathbf{B}_n(\mathbb{F}_p[t,t^{-1}]))$$

have R_{∞} for $n \geq 5$.

Let $q = p^f$ be a prime power.

41 Reidemeister classes of soluble matrix groups

Let $q = p^f$ be a prime power. Let

$$f(t) \in \mathbb{F}_p[t] \subseteq \mathbb{F}_q[t]$$

be a non-constant monic polynomial which is irreducible over $\mathbb{F}_q \supseteq \mathbb{F}_p$.

Let $q = p^f$ be a prime power. Let

 $f(t) \in \mathbb{F}_p[t] \subseteq \mathbb{F}_q[t]$

be a non-constant monic polynomial which is irreducible over $\mathbb{F}_q \supseteq \mathbb{F}_p$. Using the second theorem, we can show the following.

Proposition

For $R = \mathbb{F}_q[t, t^{-1}, f(t)^{-1}]$, the groups

 $\{B_n^+(R), \mathbb{P}B_n^+(R), \mathbb{A}\mathrm{ff}^+(R) \mid n \in \mathbb{N}_{\geq 2}\},\$

have R_{∞} .

Thank you!

