Spezielle Themen der Algebra/Geometrie: Homotopietyptheorie – Blatt 1 Vorrechnen in der Übung am 18.10.2019

Betrachten Sie das folgende "Schlusssytem für Implikationen":

 $\Sigma = \{(,), \rightarrow\} \cup \text{Var}, \text{ wobei Var eine (unendliche) Menge von Variablensymbolen ist.}$

Wir definieren die Menge der "potentiellen Urteile" $M \subset \Sigma^*$ rekursiv wie folgt:

- \bullet Jedes Variablensymbol ist in M
- Sind A und B in M, so auch $(A \rightarrow B)$

Wir lassen im Folgenden manche Klammern weg; ungeklammerte Verkettungen von \rightarrow sollen dabei als rechts-geklammert gelesen werden, d.h. $A \rightarrow B \rightarrow C$ bedeutet $A \rightarrow C$

Die Folgerungsrelation ist durch folgende drei Regeln gegeben:

$$\frac{A \qquad A \rightarrow B}{B}$$

$$\overline{A \rightarrow B \rightarrow A}$$

$$(A \rightarrow B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C$$

für beliebige $A, B, C \in M$.

Aufgabe 1:

Zeigen Sie, dass sich die folgenden Urteile ableiten lassen für beliebige $A, B, C, A_i \in M$:

- (a) $A \rightarrow A$
- (b) $(A \rightarrow B) \rightarrow A \rightarrow C \rightarrow B$
- (c) $A_1 \rightarrow A_2 \rightarrow \dots \rightarrow A_n \rightarrow A_k$ für beliebige $1 \le k \le n$

Aufgabe 2:

Analog zu Definition 1.1.1 aus der Vorlesung definiert man, was eine "Ableitung von B aus A_1, \ldots, A_k " (für A_1, \ldots, A_k , $B \in M$) ist. (Anschaulich: A_1, \ldots, A_k dürfen in der Ableitung von B als Voraussetzung verwendet werden.)

Zeigen Sie: $A_1 \rightarrow \dots \rightarrow A_k \rightarrow B$ lässt sich (ohne Voraussetzung) ableiten genau dann, wenn sich B aus A_1, \dots, A_k ableiten lässt.

Hinweis für \Leftarrow : Nehmen Sie (per Induktion über die Länge der Ableitung von B) an, dass der Satz für alle Zwischenschritte der Ableitung wahr ist. Machen Sie eine Fallunterscheidung danach, wie B gefolgert wird. Teil (a) kann nützlich sein.