Interpolation holomorpher Funktionen und Surjektivität Eulerscher partieller Differentialoperatoren

MICHAEL LANGENBRUCH (OLDENBURG)

Abstract: Wir werden stetige lineare Operatoren M auf dem Raum $\mathcal{A}(\mathbb{R}^d)$ aller reell analytischen Funktionen diskutieren, die alle Monome als Eigenvektoren haben, d.h. $M(\xi^{\alpha})(x) = m_{\alpha}x^{\alpha}$ für alle $\alpha \in \mathbb{N}^d$ (sogenannte "Multiplikatoren"). Klassische Beispiele sind Eulersche partielle Differentialoperatoren endlicher oder unendlicher Ordnung $P(\theta) := \sum_{\alpha} c_{\alpha} \theta^{\alpha}$, wobei $\theta^{\alpha} := \prod_{j \leq d} \theta_{j}^{\alpha_{j}}$ für $\theta_{j} := x_{j} \partial / \partial x_{j}$. Wir betrachten also unter anderem partielle Differentialoperatoren mit polynomiellen Koeffizienten. Es zeigt sich, dass die Multiplikatorfolge $(m_{\alpha})_{\alpha \in \mathbb{N}^d}$ als Momentenfolge eines eindeutig bestimmten analytischen Funktionals $T \in \mathcal{A}(\mathbb{R}^d)'$ gegeben werden kann, d.h. dass $m_{\alpha} = \langle T, \xi^{\alpha} \rangle$ für alle α . Momentenfolgen können als Interpolationsfolgen bestimmter holomorpher Funktionen charakterisiert werden. Auf diese Weise lassen sich notwendige und hinreichende Bedingungen für die Surjektivität Eulerscher Differentialoperatoren $P(\theta)$ herleiten, die eng mit der Halbraum-Eigenschaft des Hauptteils P_m von P verknüpft ist, d.h. $P_m(z) \neq 0$ falls $\text{Re}(z_j) > 0$ für alle $j \leq d$. Dies liefert eine Vielzahl von konkreten Beispielen surjektiver wie auch nicht surjektiver Operatoren.