Prof. Immanuel Halupczok Dr. Blaise Boissonneau

Linear Algebra I Übungsblatt 11 Lösungsvorschlag

Aufgabe 1. Weil ker f ein Untervektorraum von V ist, ist auch $k := \dim \ker f$ endlich, und wir können eine Basis u_1, \ldots, u_k von ker f nehmen.

Wir setzen auch $\ell := \dim \operatorname{im} f$ und nehmen w_1, \ldots, w_ℓ eine Basis von $\operatorname{im} f$. Für alle $i \in \{1, \ldots, \ell\}$ nehmen wir $v_i \in V$ mit $f(v_i) = w_i$, das ist möglich da $w_i \in \operatorname{im} f$ liegt.

Wir werden jetzt zeigen, dass $v_1, \ldots, v_\ell, u_1, \ldots, u_k$ eine Basis von V bilden.

Seien a_1, \ldots, a_ℓ und b_1, \ldots, b_k Skalare, sodass $\sum_{i=1}^\ell a_i v_i + \sum_{i=1}^k b_j u_j = 0_V$ gilt. Dann haben wir $f(\sum_{i=1}^\ell a_i v_i + \sum_{i=1}^k b_j u_j) = f(0_V) = 0_W$. Weil f linear ist, gilt $f(\sum_{i=1}^\ell a_i v_i + \sum_{i=1}^k b_j u_j) = \sum_{i=1}^\ell a_i f(v_i) + \sum_{i=1}^k b_j f(u_j) = \sum_{i=1}^\ell a_i w_i$ – errinern Sie, dass alle u_j in ker f liegen. w_1, \ldots, w_ℓ bilden eine Basis von im f, insbesondere sind sie linear unabhängig. Aus $\sum_{i=1}^\ell a_i w_i = 0_W$ folgt, dass alle a_i gleich null sind.

Jetzt haben wir $\sum_{i=1}^{\ell} a_i v_i + \sum_{i=1}^{k} b_j u_j = \sum_{i=1}^{k} b_j u_j = 0_V$. Weil u_1, \ldots, u_k eine Basis von ker f bilden, sind sie auch linear unabhängig, und alle a_i müssen gleich null sein. Weil die Skalare a_1, \ldots, a_ℓ und b_1, \ldots, b_k alle null sind, wissen wir, dass $v_1, \ldots, v_\ell, u_1, \ldots, u_k$ linear unabhängig sind.

Zuletzt gilt dim $V = \operatorname{rk} f = \dim \ker f = \ell + k$. Die Anzahl von Elemente in die linear unabhängig Familie $v_1, \ldots, v_\ell, u_1, \ldots, u_k$ ist genau gleich die Dimension von V, d.h., $v_1, \ldots, v_\ell, u_1, \ldots, u_k$ muss eine Basis von V sein.

Jetzt ergänzen wir w_1, \ldots, w_ℓ nach einer Basis w_1, \ldots, w_n von W, und wir haben $f(v_i) = w_i$ für alle $i \in \{1, \ldots, \ell\}$ und $f(u_j) = 0_W$ für alle $j \in \{1, \ldots, k\}$, d.h., die Matrix von f in die Basen $v_1, \ldots, v_\ell, u_1, \ldots, u_k$ und w_1, \ldots, w_n hat genau die Form wir wollen.

Aufgabe 2.

a)
$$\operatorname{im} A = \left\{ \begin{pmatrix} a+5b+c+d \\ a+5b \\ a+5b \end{pmatrix} \middle| a,b,c,d \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} x \\ y \\ y \end{pmatrix} \middle| x,y \in \mathbb{R} \right\} = \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\rangle_{\mathbb{R}}$$
 und $\ker A = \left\{ \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \in \mathbb{R}^4 \middle| \begin{pmatrix} a+5b+c+d \\ a+5b \\ a+5b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} = \left\{ \begin{pmatrix} -5x \\ x \\ y \\ -y \end{pmatrix} \in \mathbb{R}^4 \middle| x,y \in \mathbb{R} \right\} = \left\langle \begin{pmatrix} -5 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\rangle_{\mathbb{R}}$. Wir haben $\operatorname{rk} A = 2$, $\operatorname{dim} \ker A = 2$ und $\operatorname{dim} \mathbb{R}^4 = 4$, und $2 = 4 = 4$.

b) Es gilt rk A + rk B - dim $\mathbb{R}^3 \le$ rk $BA \le$ min(rk A, rk B), oder $1 \le$ rk $BA \le 2$, d.h., rk BA can 1 oder 2 sein.

c)
$$B_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 und $B_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ funktionnieren.

d) Wir haben $\operatorname{rk} A + \operatorname{rk} C - \dim \mathbb{R}^3 \leqslant \operatorname{rk} CA$, oder $\operatorname{rk} C \leqslant \operatorname{rk} CA + \dim \mathbb{R}^3 - \operatorname{rk} A = 0 + 3 - 2 = 1$. $C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ funktionniert.

Aufgabe 3. Wir haben $\operatorname{rk} f = \dim V - \dim \ker f$.

- a) f ist surj. gdw. im f = W gdw. rk $f = \dim W$. Wenn $\dim W = \dim V$ ist, gilt rk $f = \dim W$ gdw. rk $f = \dim V$ gdw. dim ker f = 0 gdw. f inj. ist.
- b) $\operatorname{rk} f$ ist immer kleiner als (oder gleich) $\dim W$. Wenn $\dim W < \dim V$ ist, gilt $\operatorname{rk} f < \dim V$, d.h., $\dim V \dim \ker f < \dim V$ und $\dim \ker f > 0$: f ist nicht injektiv.
- c) rk $f = \dim V \dim \ker f \leq \dim V$. Wenn $\dim V < \dim W$ ist, gilt rk $f < \dim W$, d.h., im $f \neq W$ und f ist nicht surjektiv.

Aufgabe 4.

- a) $1, x, x^2, x^3, \dots$ sind linear unabhängig.
- b) Seien $P = \sum_{i=0}^{n} a_i x^i, Q = \sum_{i=0}^{m} b_i x^i \in \mathbb{R}[x]$ und $c \in \mathbb{R}$. Wir haben $cP + Q = \sum_{i=0}^{\max(n,m)} (ca_i + b_i) x^i$ und $h(cP + Q) = \sum_{i=1}^{\max(n,m)} (ca_i + b_i) i x^{i-1}$. Es gilt auch $ch(P) + h(Q) = c \sum_{i=1}^{n} ca_i i x^{i-1} + \sum_{i=1}^{m} cb_i i x^{i-1} = \sum_{i=1}^{\max(n,m)} (ca_i + b_i) i x^{i-1}$, d.h., h ist linear.
- c) $\ker h = \{a \in \mathbb{R}[x] \mid a \in \mathbb{R}\}: h \text{ ist nicht injektiv.}$
- d) Sei $P = \sum_{i=0}^n a_i x^i \in \mathbb{R}[x]$. Dann ist $Q = \sum_{i=0}^{n+1} \frac{a_i}{i+1} x^{i+1}$ ist ein Element von $\mathbb{R}[x]$ mit h(Q) = P, d.h., $P \in \text{im } h$ und im $h = \mathbb{R}[x]$: h ist surjektiv.

Aufgabe 5.

a)
$$E_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
 und $E_1^{-1} = E_1$.

b)
$$E_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 und $E_2^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

c)
$$E_3 = \begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 und $E_3^{-1} = \begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.