Linear Algebra I Übungsblatt 5 Lösungsvorschlag

Aufgabe 1.

• Sei (G, \circ) eine Gruppe und sei $\emptyset \neq H \subseteq G$, sodass für alle $a, b \in H$ gilt $a \circ b^{-1} \in H$. Wir werden zeigen, dass (H, \circ) eine Untergruppe von (G, \circ) ist.

Weil H nicht leer ist, existiert $a \in H$. Sei $e \in G$ das neutrale Element von G. Dann liegt $e = a \circ a^{-1}$ in H.

Sei $x \in H$. Dann liegt $x^{-1} = e \circ x^{-1}$ in H, d.h., H ist abgeschlossen unter Inversen. Seien $a, b \in H$. Dann liegt auch $b^{-1} \in H$ und $a \circ (b^{-1})^{-1} \in H$. Aber $(b^{-1})^{-1} = b$, d.h., es gilt $a \circ b \in H$ und somit ist H abgeschlossen unter "o".

• Seien nun (G, \circ) eine Gruppe und $H \subseteq G$ eine Untergruppe. Wir werden zeigen, dass H nicht leer ist, und dass für alle $a, b \in H$ auch $a \circ b^{-1} \in H$ liegt.

Weil H eine Untergruppe ist, enthält H das Element e. Also $H \neq \emptyset$.

Seien $a, b \in H$. Aus der Abgeschlossenheit von H unter Inversen folgt, dass $b^{-1} \in H$ liegt. Danach gilt auch $a \circ b^{-1} \in H$, weil H abgeschlossen unter " \circ " ist.

Aufgabe 2.

Wir nennen $A = \{(x, 1) \mid x \in \mathbb{R}\}, B = \{(x, 2x) \mid x \in \mathbb{R}\} \text{ und } C = \{(x, x^2) \mid x \in \mathbb{R}\}.$

- a) A ist keine Untergruppe, weil sie (0,0) nicht enthält.
- b) B ist eine Untergruppe: B ist nicht leer, z.B. weil $(1,2) \in B$ liegt. Sei nun (a,2a), $(b,2b) \in B$. Von Aufgabe 1 folgt, dass es nur um $(a,2a) (b,2b) \in B$ zu zeigen reicht. Es gilt: $(a,2a) (b,2b) = (a-b,2(a-b)) \in B$.
- c) C ist keine Untergruppe, weil sie nicht abgeschlossen unter Inversen ist. Z.B. liegt (1,1) in C aber nicht sein Inverses (-1,-1).

Aufgabe 3. Sei R ein Ring. Per Definition eines Ringes enthält R ein Element 1, das neutral für "·" ist. Wir betrachten $a=1+1\in R$. Dann gilt wegen Distributivität für alle $b\in R$, dass $a\cdot b=(1+1)\cdot b=1\cdot b+1\cdot b=b+b$ ist, d.h., a ist ein "zwei-Element".

Aufgabe 4. Wir müssen zeigen, dass R^{\times} abgeschlossen unter "" ist, dass $1 \in R^{\times}$ liegt, und dass alle $a \in R^{\times}$ ein Inverses $b \in R^{\times}$ besitzen. Assoziativität folgt aus der Definition eines Ringes.

Seien $a, b \in R^{\times}$. Dann existiert $a', b' \in R$ mit aa' = a'a = 1 = bb' = b'b, und gilt:

$$(b'a')(ab) = b'(aa')b = b'1b = b'b = 1$$
 und $(ab)(b'a') = a(bb')a' = a1a' = aa' = 1$

Das heißt, $ab \in R^{\times}$, und R^{\times} ist abgeschlossen unter "·".

Weil $1 \cdot 1 = 1$ gilt, liegt 1 in R^{\times} .

Sei $a \in R^{\times}$. Dann existiert $b \in R$ mit ab = ba = 1. Das bedeutet, dass auch $b \in R^{\times}$ liegt.

Aufgabe 5.

- a) $(\mathbb{Q}, +)$ ist eine abelsche Gruppe und \mathbb{Z} ist eine Untergruppe von \mathbb{Q} .
- b) i) $\frac{2}{3} (-\frac{1}{3}) = 1 \in \mathbb{Z}$, d.h., $\frac{2}{3} \sim -\frac{1}{3}$ und $-\frac{1}{3}$ ist ein Representant von $\overline{(\frac{2}{3})}$.
 - ii) $\frac{2}{3} 0 \notin \mathbb{Z}$, d.h., 0 ist kein Representant von $\overline{\left(\frac{2}{3}\right)}$.
 - iii) $\frac{2}{3} \frac{1}{3} = \frac{1}{3} \notin \mathbb{Z}$, d.h., $\frac{1}{3}$ ist kein Representant von $\overline{\left(\frac{2}{3}\right)}$.
 - iv) $\frac{2}{3}$ ist natürlich ein Representant von $\overline{\left(\frac{2}{3}\right)}$.
 - v) $\frac{2}{3} 1 \notin \mathbb{Z}$, d.h., 1 ist kein Representant von $\overline{\left(\frac{2}{3}\right)}$.
- c) $\overline{\left(\frac{2}{3}\right)} + \overline{\left(\frac{5}{6}\right)} = \overline{\left(\frac{2}{3} + \frac{5}{6}\right)} = \overline{\left(\frac{3}{2}\right)}$
- d) $\overline{\left(\frac{2}{3}\right)} + \overline{\left(\frac{5}{6}\right)} = \overline{\left(-\frac{1}{3}\right)} + \overline{\left(\frac{5}{6}\right)} = \overline{\left(\frac{5}{6} \frac{1}{3}\right)} = \overline{\left(\frac{1}{2}\right)}$. Das Ergebnis ist gleich wie bevor, weil $\frac{3}{2} = \frac{1}{2} + 1$, d.h, $\overline{\left(\frac{3}{2}\right)} = \overline{\left(\frac{1}{2}\right)}$.
- e) Sei $a \in \mathbb{Q}$, dann existiert $n \in \mathbb{Z}$ mit $n \leqslant a < n+1$, das heißt, $a-n \in M$. Weil $n \in \mathbb{Z}$ liegt, gilt $\overline{a} = \overline{(a-n)}$ und \overline{a} hat mindestens ein Representant in M, nämlich a-n. Sei $a,b \in M$ mit $\overline{a} = \overline{b}$. Das heißt, es gibt $n \in \mathbb{Z}$ mita = b+n. Aber $b \in M$, damit $0 \leqslant b < 1$; und $a \in M$, damit $0 \leqslant b+n < 1$ und $-n \leqslant b < 1-n$. Davon folgt -n < 1 und 1-n > 0, oder -1 < n < 1; das gibt, n = 0 und a = b. Außer zu sagen: alle verschiedene Elemente in M liegen in verschiedene Nebenklassen in \mathbb{Q}/\mathbb{Z} .
- f) $a \oplus b = \begin{cases} a+b & \text{wenn } a+b < 1 \\ a+b-1 & \text{wenn } a+b \geqslant 1 \end{cases}$
- g) Aus e) folgt, dass die kannonische Abbildung $M \to \mathbb{Q}/\mathbb{Z}$, $a \mapsto \overline{a}$ eine Bijektion ist. Es gilt auch $\overline{(a \oplus b)} = \overline{a} + \overline{b}$. Weil \mathbb{Q}/\mathbb{Z} eine abelsche Gruppe ist, ist auch M eine abelsche Gruppe.
- h) Die Verknüpfung von M ist nicht gleich die Verknupfüng von \mathbb{Q} , z.B., $\frac{1}{2}+\frac{1}{2}=1$, aber $\frac{1}{2}\oplus\frac{1}{2}=0$.