Aufgaben der Hauptklausur Lineare Algebra II

Aufgabe 1 (3+1+2+2):

Sei $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$ und sei $\beta \colon \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ die zugehörige symmetrische Bilinearform, d. h. $\beta(v, w) = v^T A w$.

- (a) Finden Sie eine Matrix $S \in GL_n(\mathbb{R}^3)$, so dass $S^TAS = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ ist. (Begründen Sie insbesondere, dass Ihre Matrix S invertierbar ist.)
- (b) Ist β positiv definit?
- (c) Gibt es einen Vektor $v \in \mathbb{R}^3$ mit $\beta(v, v) < 0$?
- (d) Was ist die maximale Dimension eines Untervektorraums $U \subseteq \mathbb{R}^3$, so dass $\beta(u, u') = 0$ für alle $u, u' \in U$ gilt?

Aufgabe 2 (2+2+4):

- (a) Seien $a_1, a_2 \in \mathbb{R}$ und $A = \begin{pmatrix} a_1 & a_2 \\ 0 & 0 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$. Für welche a_1, a_2 gilt ker $A \oplus \operatorname{im} A = \mathbb{R}^2$? (Hier und im Rest der Aufgabe ist mit \oplus die innere direkte Summe gemeint.)
- (b) Sei K ein Körper, V ein endlich-dimensionaler K-Vektorraum und sei $f \in \text{End}(V)$ so, dass im $f \oplus \ker f = V$ gilt. Zeigen Sie: $\ker f^2 = \ker f$.
- (c) Sei weiterhin K ein Körper, V ein endlich-dimensionaler K-Vektorraum und $f \in \text{End}(V)$ ein Endomorphismus. Zeigen Sie, dass die folgenden Bedingungen äquivalent sind:
 - (i) $\operatorname{im} f \oplus \ker f = V$
 - (ii) In der jordanschen Normalform von f kommt kein Jordanblock der Größe ≥ 2 mit Eigenwert 0 vor.

Aufgabe 3 (2+3+1+2):

- (a) Bestimmen Sie das Minimalpolynom von A.
- (b) Bestimmen Sie die Eigenwerte von A und für jeden Eigenwert λ_i die Dimensionen dim(Eig $_{\lambda_i}$ A) und dim(Hau $_{\lambda_i}$ A) des entsprechenden Eigenraums und Hauptraums.
- (c) Geben Sie ein Element von $\bigwedge^2 \mathbb{C}^5$ an, das von $\bigwedge^2 A$ nicht auf 0 abgebildet wird.
- (d) Zeigen Sie, dass $\bigwedge^3 A$ die 0-Abbildung ist.

Aufgabe 4 (2+1+2+2+1):

- (a) Zeigen Sie, dass ein $\alpha \in (\mathbb{R}^{\mathbb{N}})^*$ existiert mit $\alpha(\mathbb{R}^{\oplus \mathbb{N}}) = \{0\}$ und $\alpha((1,1,1,\dots)) = 1$.
- (b) Bestimmen Sie $\alpha((1, 2, 4, 10, 5, 5, 5, 5, 5, 5, 5, \dots))$.
- (c) Sei $N \in \mathbb{N}$ und seien $(a_i)_i, (b_i)_i \in \mathbb{R}^{\mathbb{N}}$ zwei Folgen, die ab dem N-ten Folgeglied übereinstimmen, also $a_i = b_i$ für alle $i \geq N$. Zeigen Sie, dass für jedes α , das die Bedingungen aus (a) erfüllt, gilt: $\alpha((a_i)_i) = \alpha((b_i)_i)$.
- (d) Sei weiterhin α wie in (a), sei $(a_i)_i \in \mathbb{R}^{\mathbb{N}}$ beliebig, sei $r := \alpha((a_i)_i)$, und sei $(b_i)_i \in \mathbb{R}^{\mathbb{N}}$ definiert durch $b_i = a_i r$ für alle $i \in \mathbb{N}$. Zeigen Sie, dass $(b_i)_i$ im Kern von α liegt.
- (e) Sei weiterhin α wie in (a). Zeigen Sie: $\ker \alpha \oplus \langle (1, 1, 1, \dots) \rangle_{\mathbb{R}} = \mathbb{R}^{\mathbb{N}}$. (Hier ist die innere direkte Summe gemeint.)

Aufgabe 5 (1+1+2+2+2):

(a) Wir schreiben e_1, e_2, e_3 für die Standardbasis von \mathbb{R}^3 . Zeigen Sie, dass genau eine lineare Abbildung

$$f \colon \mathbb{R}^3 \otimes \mathbb{R}^3 \to \mathbb{R}^3 \oplus \mathbb{R}^3$$

- existiert, die $e_i \otimes e_j$ auf (e_i, e_j) abbildet, für alle $i, j \in \{1, 2, 3\}$.
- (b) Zeigen Sie, dass f nicht injektiv ist.
- (c) Drücken Sie $v := \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$ in der Standardbasis von $\mathbb{R}^3 \otimes \mathbb{R}^3$ und bestimmen Sie dann f(v).
- (d) Berechnen Sie $f(\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \otimes e_1)$, für $a_1,a_2,a_3 \in \mathbb{R}$.
- (e) Sei $\alpha \in (\mathbb{R}^3 \oplus \mathbb{R}^3)^*$ definiert durch: $\alpha(e_i, 0) = 1$ und $\alpha(0, e_i) = -1$ für $i \in \{1, 2, 3\}$. Zeigen Sie, dass α im Kern der dualen Abbildung f^* liegt.
 - Zur Erinnerung: Die zu f duale Abbildung $f^*: (\mathbb{R}^3 \oplus \mathbb{R}^3)^* \to (\mathbb{R}^3 \otimes \mathbb{R}^3)^*$ ist definiert durch: $f^*(\alpha) = \alpha \circ f$.