Linear Algebra II Hauptklausur Lösungsvorschlag

Aufgabe 1.

a) Bei der Spektralsatz, da A symmetrisch ist, ist A diagonalisierbar. Wir werden S finden durch Spalte und Zeilen operationen.

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \xrightarrow{S_2 - S_1 \to S_2} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \xrightarrow{Z_2 - Z_1 \to Z_2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
$$\xrightarrow{S_3 - S_1 \to S_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \xrightarrow{Z_3 - Z_1 \to Z_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Also nehmen wir
$$S = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 und es gilt $S^T A S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Zuletz haben wir dass S invertierbar ist, da det(S) = 1 gilt.

b) Nein: die EW von A sind 1 und 0. Insbesondere existiert $v \in \ker A \setminus \{0\}$, z.B.,

$$v = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$$

Dann gilt $\beta(v, v) = 0$.

c) Nein: Sei $v \in \mathbb{R}^{3}$. Sei $w = S^{-1}v$. Wir schreiben w als $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ mit $a, b, c \in \mathbb{R}$. Dann gilt v = Sw, und $\beta(v, v) = \beta(Sw, Sw) = (Sw)^{T}A(Sw) = w^{T}(S^{T}AS)w = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = a^{2} \geqslant 0.$

Alternativlösung: Sei
$$v = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3$$
. Dann gilt $v^T A v = \begin{pmatrix} a & b & c \end{pmatrix} \begin{pmatrix} a+b+c \\ a+b+c \\ a+b+c \end{pmatrix} = a(a+b+c) + b(a+b+c) + c(a+b+c) = (a+b+c)(a+b+c) = (a+b+c)^2 \geqslant 0$.

- d) ker A ist ein solcher Untervektorraum, da für alle $u, u' \in \ker A$ gilt $\beta(u, u') = u^T A u' = u^T \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0$. Da rk A = 1 ist, gilt dim ker A = 2.
 - Es gilt auch $\beta\begin{pmatrix} 1\\0\\0 \end{pmatrix}$, $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$) = 1 \neq 0, also 2 ist die maximale Dimension eines solchse Untervektorraums.

Aufgabe 2.

a) Es gilt $A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_1x + a_2y \\ 0 \end{pmatrix}$, also $\ker A = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid a_1x + a_2y = 0 \right\}$. Wenn $a_1 = a_2 = 0$ sind, gilt $\ker A = \mathbb{R}^2$, $\operatorname{im} A = \{0\}$ und $\ker A \oplus \operatorname{im} A = \mathbb{R}^2$. Wenn nicht, dann hat A Rang 1 und $\operatorname{dim} \ker A = 1$.

Wenn $a_1 \neq 0$ ist, dann ist $A\begin{pmatrix} \frac{1}{a_1} \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \operatorname{im} A$, also $\operatorname{im} A = \langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rangle_{\mathbb{R}}$. Aber $A\begin{pmatrix} a_2 \\ a_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, also $\ker A = \langle \begin{pmatrix} a_2 \\ a_1 \end{pmatrix} \rangle_{\mathbb{R}}$ und $\operatorname{im} A \oplus \ker A = \mathbb{R}^2$.

Wenn schließlich $a_1 = 0$ und $a_2 \neq 0$ ist, dann gilt $A \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} a_2 \\ 0 \end{pmatrix}$ und $A \begin{pmatrix} a_2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, also $\begin{pmatrix} a_2 \\ 0 \end{pmatrix} \in \ker A \cap \operatorname{im} A$ und man erhält keine direkte Summe.

- b) Sei $v \in \ker f$. Dann $f^2(v) = f(f(v)) = f(0) = 0$, also $\ker f \subseteq \ker f^2$. Sei nun $v \in \ker f^2$. Dann ist $f^2(v) = f(f(v)) = 0$, d.h., $f(v) \in \ker f$. Aber $f(v) \in \ker f$ und $\inf f \cap \ker f = \{0\}$, also f(v) = 0, d.h., $v \in \ker f$ und $\ker f^2 \subseteq \ker f$.
- c) Angenommen, dass die JNF von f ein Block mit Größe $r \ge 2$ und EW 0 enthält. D.h., es existiert $v_1, \ldots, v_r \in V$ mit $f(v_1) = 0$ und $f(v_i) = v_{i-1}$ für $1 < i \le r$. Insbesondere ist $v_1 \in \ker f$ aber $v_2 \notin \ker f$. Aber $f^2(v_2) = f(f(v_2)) = f(v_1) = 0$, also $v_2 \in \ker f^2$ und $\ker f^2 \ne \ker f$. Aus b) folgt, dass "im $f \oplus \ker f = V$ " nicht gilt. Wir nehmen nun an, dass die JNF von f keinen Block dieser Form enthält. Sei v_1, \ldots, v_n eine Basis von V sodass die Matrix von f der folgende form hat:

$ \begin{pmatrix} \lambda_1 & 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ 0 & \dots & \dots & 0 & \lambda_1 \end{pmatrix} $									
	٠	1	1	0		0			
		λ_k	1	0		0			
		0	•••	٠٠.	٠.	:			
		:	٠	٠	٠	0			
		÷		٠.,	٠.,	1			
		0			0	λ_k			
							0		
								٠٠.	
									0

mit $\lambda_i \neq 0$ und mit Blockgröße r_1, \ldots, r_k . Dann ist

$$\ker f = \langle v_{r_1 + \dots + r_k + 1}, v_{r_1 + \dots + r_k + 2}, \dots, v_n \rangle_{\mathbb{C}}$$

und

$$\operatorname{im} f \subseteq \langle v_1, \dots, v_{r_1 + \dots + r_k} \rangle_{\mathbb{C}}.$$

Also ist $\ker f \cap \operatorname{im} f = \{0\}$, und wegen der Rangformel haben wir $\dim(\operatorname{im} f + \ker f) = \dim(\operatorname{im} f) + \dim(\ker f) - \dim(\operatorname{im} f \cap \ker f) = \operatorname{rk} f + \dim \ker f - 0 = \dim V$. D.h., $\ker f \oplus \operatorname{im} f = V$.

Aufgabe 3.

- a) Da A kein Vielfaches von I_5 ist, gilt $\deg \mu > 1$. Es gilt $A^2 = A$, also $\mu_A(x) = x^2 x$.
- b) $\chi_A(\lambda) = \det(\lambda I_5 A) = (\lambda 1)^2 \lambda^3$, also hat A als Eigenwerte 0 und 1. A hat rang 2, daraus folgt dim ker $A = \dim \operatorname{Eig}_0(A) = 3$. Es gilt auch $Ae_1 = e_1$ und $Ae_2 = e_2$, also $\operatorname{Eig}_1(A) \supseteq \langle e_1, e_2 \rangle_{\mathbb{C}}$ und dim $\operatorname{Eig}_2(A) \geqslant 2$. Es folgt dim $\operatorname{Hau}_0(A) \geqslant 3$ und dim $\operatorname{Hau}_1(A) \geqslant 2$. Da die Summe dieser Dimensionen 5 sein muss, muss überall Gleichheit gelten, also

$$\dim \operatorname{Hau}_0(A) = \dim \operatorname{Eig}_0(A) = 3 \text{ und } \dim \operatorname{Hau}_1(A) = \dim \operatorname{Eig}_1(A) = 2.$$

- c) $(\bigwedge^2 A)(e_1 \wedge e_2) = Ae_1 \wedge Ae_2 = e_1 \wedge e_2 \neq 0.$
- d) Sei $v \in \mathbb{C}^5$. Dann ist $Av \in \text{im } A = \langle e_1, e_2 \rangle_{\mathbb{C}}$. Seien $v_1, v_2, v_3 \in \mathbb{C}^5$. Dann sind Av_1, Av_2 und Av_3 linear abhängig, da sie 3 Vektoren in einen 2-dimensionalen VR sind. Also ist $(\bigwedge^3 A)(v_1 \wedge v_2 \wedge v_3) = Av_1 \wedge Av_2 \wedge Av_3 = 0$. Das impliziert, dass $\bigwedge^3 A = 0$ ist.

Alternativlösung: Jeder Standard-Basis-Vektor e_i wird von A entweder auf e_1 oder auf e_2 abgebildet. Ist $e_i \wedge e_j \wedge e_k$ ein Standard-Basis-Vektor von $\bigwedge^3 \mathbb{C}^5$ (mit i < j < k), so kommt in $Ae_i \wedge Ae_j \wedge Ae_k$ also mindestens einer der Vektoren e_1 und e_2 doppelt vor; also ist $Ae_i \wedge Ae_j \wedge Ae_k = 0$.

Aufgabe 4.

- a) Sei $\{e_i \mid i \in \mathbb{N}\}$ die Standardbasis von $\mathbb{R}^{\oplus \mathbb{N}}$, ,d.h., $e_0 = (1,0,0,0,\dots)$, $e_1 = (0,1,0,0,0,\dots)$, $e_2 = (0,0,2,0,\dots)$ usw. Sei $u = (1,1,1,1\dots) \in \mathbb{R}^{\mathbb{N}}$. Da $u \notin \mathbb{R}^{\oplus \mathbb{N}}$ liegt, gilt, dass die Menge $\{e_i \mid i \in \mathbb{N}\} \cup \{u\}$ ist linear unabhängig.
 - Wir erweitern $\{e_i \mid i \in \mathbb{N}\} \cup \{u\}$ zu einer Basis B von $\mathbb{R}^{\mathbb{N}}$. Dann definieren wir α über B durch $\alpha(e_i) = 0$ für alle $i \in \mathbb{N}$, $\alpha(u) = 1$, und $\alpha(v)$ beliebig, z.B. = 0, für alle $v \in B \setminus (\{e_i \mid i \in \mathbb{N}\} \cup \{u\})$.
- b) Es gilt $\alpha((1, 2, 4, 10, 5, 5, \dots)) = \alpha((-4, -3, -1, 5, 0, 0, \dots) + (5, 5, 5, \dots)) = 0 + 5 = 5.$
- c) Es gilt $(a-b)_i = 0$ für alle $i \ge N$, d.h., $(a-b) \in \mathbb{R}^{\oplus \mathbb{N}}$, und damit $\alpha(a-b) = 0$, d.h., $\alpha(a) = \alpha(b)$.
- d) Es gilt b = a ru, also $\alpha(b) = \alpha(a) \alpha(ru) = r r = 0$.
- e) Sei $a \in \mathbb{R}^{\mathbb{N}}$. Aus d) folgt, dass a = b + ru, wobei $r = \alpha(a)$, mit $b \in \ker \alpha$; d.h., a ist die Summe von einem Element des Kerns und einem Element von $\langle u \rangle_{\mathbb{R}}$. Anders ausgedrückt: $\ker \alpha + \langle u \rangle_{\mathbb{R}} = \mathbb{R}^{\mathbb{N}}$.

Sei nun $a \in \ker \alpha \cap \langle u \rangle_{\mathbb{R}}$. Also a = ru für $r \in \mathbb{R}$, und $\alpha(a) = \alpha(ru) = r = 0$. Also a = 0, d.h, $\ker \alpha \cap \langle u \rangle_{\mathbb{R}} = \{0\}$ und somit $\ker \alpha \oplus \langle u \rangle_{\mathbb{R}} = \mathbb{R}^{\mathbb{N}}$.

Aufgabe 5.

- a) Die Menge $\{e_i \otimes e_j \mid i, j \in \{1, 2, 3\}\}$, auf der f vorgegeben ist, ist eine Basis von $\mathbb{R}^3 \otimes \mathbb{R}^3$. Also gibt es genau eine solche lineare Abbildung.
- b) Es gilt $\dim(\mathbb{R}^3 \otimes \mathbb{R}^3) = 9$ und $\mathbb{R}^3 \oplus \mathbb{R}^3 = 6$, also f kann nicht injektiv sein.
- c) Es gilt $v = 2(e_1 \otimes e_3) + 1(e_2 \otimes e_3) + 4(e_1 \otimes e_1)$, also $f(v) = 2(e_1, e_3) + (e_2, e_3) + 4(e_1, e_1) = (6e_1 + e_2, 4e_1 + 3e_3)$.
- d) Es gilt $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \otimes e_1 = a_1(e_1 \otimes e_1) + a_2(e_2 \otimes e_1) + a_3(e_3 \otimes e_1)$, also $f(\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \otimes e_1) = a_1(e_1, e_1) + a_2(e_2, e_1) + a_3(e_3, e_1) = (\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \begin{pmatrix} a_1 + a_2 + a_3 \\ 0 \\ 0 \end{pmatrix})$.
- e) Da $f^*(\alpha) \in (\mathbb{R}^3 \otimes \mathbb{R}^3)^*$ ist, reicht es zu zeigen, dass $f^*(\alpha)$ eine Basis von $\mathbb{R}^3 \otimes \mathbb{R}^3$ auf 0 abbildet. Seien $i, j \in \{1, 2, 3\}$. Dann ist $(f^*(\alpha))(e_i \otimes e_j) = (\alpha \circ f)(e_i \otimes e_j) = \alpha(f(e_i \otimes e_j)) = \alpha(e_1, e_j) = \alpha(e_1, 0) + \alpha(0, e_j) = 1 1 = 0$. D.h., $\alpha \in \ker f^*$.