Linear Algebra II Übungsblatt 13 Lösungsvorschlag

Aufgabe 1.

- a) Sei v_1, \ldots, v_n eine Basis von V und $\alpha_1, \ldots, \alpha_n$ die dazu duale Basis. Dann ist $\{f_{v_i,\alpha_j} \mid 1 \leqslant i,j \leqslant n\}$ eine Basis von $\operatorname{End}(V)$. Wir definieren $s \in \operatorname{Hom}(\operatorname{End}(V) \to K)$ durch $s(f_{v_i,\alpha_j}) = \alpha_j(v_i)$. Weil die f_{v_i,α_j} eine Basis bilden, ist s eindeutig (und wohldefiniert).
 - Seien nun $v, w \in V$ und $\alpha \in V^*$. Wir schreiben v als $\sum_{i=1}^n a_i v_i$ und α als $\sum_{j=1}^n b_j \alpha_j$. Es gilt $f_{v,\alpha}(w) = \alpha(w)v = \sum_{j=1}^n \sum_{i=1}^n a_i b_j \alpha_j(w)v_i = \sum_{j=1}^n \sum_{i=1}^n a_i b_j f_{v_i,\alpha_j}(w)$, also $s(f_{v,\alpha}) = \sum_{j=1}^n \sum_{i=1}^n a_i b_j s(f_{v_i,\alpha_j}) = \sum_{j=1}^n \sum_{i=1}^n a_i b_j \alpha_j(v_i) = \alpha(v)$.
- b) Sei $E_{ij} = e_i^T \cdot e_j$ und $f_{ij} \in \text{End}(K^n)$ gegeben durch E_{ij} . f_{ij} ist der form $\alpha(v)$, mit $v = e_j \in K^n$ und $\alpha = e_i^T \in (K^n)^*$. Dann ist $s(f_{ij}) = e_j \cdot e_i^T = \delta_{ij}$, und es gilt $A = \sum_{1 \leq i,j \leq n} a_{ij} E_{ij}$, also $s(f) = \sum_{i=1}^n a_{ii}$.

Aufgabe 2.

Vektoren $v_1, \ldots, v_n \in V$ sind linear unabhängig über \mathbb{C} in $V_{\mathbb{C}}$ gdw. für alle $a_1, \ldots, a_n \in \mathbb{C}$, $\sum_{i=1}^n (a_i \otimes v_i) = 0$ impliziert $a_1 = 0, \ldots, a_n = 0$.

"\equivasures": Seien $v_1, \ldots, v_n \in V$ linear unabhängig über \mathbb{C} in $V_{\mathbb{C}}$ sind. Seien $a_1, \ldots, a_n \in \mathbb{R}$ sodass $\sum_{i=1}^n a_i v_i = 0$ in V gilt. Dann gilt $1 \otimes (\sum_{i=1}^n a_i v_i) = 1 \otimes 0 = 0$ in $V_{\mathbb{C}}$. Aber $1 \otimes (\sum_{i=1}^n a_i v_i) = \sum_{i=1}^n (a_i \otimes v_i)$, also sind a_1, \ldots, a_n gleich null, d.h., v_1, \ldots, v_n sind linear unabhängig in V.

"⇒": Seien $v_1, \ldots, v_n \in V$ linear unabhängig. Dann können wir eine Basis B von V bilden, die die Vektoren v_1, \ldots, v_n enthält. Es gilt auch, dass $\{1, i\} \subseteq \mathbb{C}$ eine Basis von \mathbb{C} (als \mathbb{R} -Vektorraum) bildet. Seien $a_1, \ldots, a_n \in \mathbb{C}$. Dann ist $\{1 \otimes v, i \otimes v \mid v \in B\}$ eine \mathbb{R} -Basis von $\mathbb{C} \otimes V$, und $\{1 \otimes v, i \otimes v \mid 1 \leqslant k \leqslant n\}$ ist insbesondere linear unabhängig. Seien $a_1, \ldots, a_n \in \mathbb{C}$ sodass $\sum_{k=1}^n (a_k \otimes v_k) = 0$. Wir schreiben alle a_k als $x_k + iy_k$ mit $x_k, y_k \in \mathbb{R}$. Dann ist $0 = \sum_{k=1}^n (a_k \otimes v_k) = \sum_{k=1}^n (x_k \otimes v_k + iy_k \otimes v_k) = \sum_{k=1}^n (x_k (1 \otimes v_k) + y_k (i \otimes v_k))$. Weil $\{1 \otimes v, i \otimes v \mid 1 \leqslant k \leqslant n\}$ linear unabhängig ist, sind alle x_k und y_k null, also sind alle a_k null. D.h., v_1, \ldots, v_n sind linear unabhängig über \mathbb{C} in $V_{\mathbb{C}}$.

Aufgabe 3. Wir nehmen an, dass $K \neq \mathbb{F}_2$ und $V \neq \{0\}$.

a) Nein: Sei $\alpha \in V^* \setminus \{0\}$. Insbesondere existiert $v \in V$ sodass $\alpha(v) \neq 0$. Dann gilt $f(\alpha \otimes 0)(v) = \alpha(v) + 0 \neq 0$, d.h., $f(0) \neq 0$ und f kann nicht linear sein.

- b) Nein: Sei $\lambda \in K \setminus \{0,1\}$ und sei $v \in V \setminus \{0\}$. Dann gilt $f((v,v)) = v \otimes v \neq 0$, und $f(\lambda \cdot (v,v)) = f((\lambda v, \lambda v)) = \lambda v \otimes \lambda v = \lambda^2 v \otimes v = (\lambda^2 \lambda) f((v,v))$. Daraus folgt $f(\lambda(v,v)) \lambda f((v,v)) = (\lambda^2 \lambda) f((v,v)) \neq 0$, da $\lambda^2 \lambda \neq 0$ und $f((v,v)) \neq 0$.
- c) Ja: Seien $\lambda \in K$ und $v, v', w, w' \in V$. Dann gilt $f(\lambda(v, v') + (w, w')) = f((\lambda v + v', \lambda w + w')) = (\lambda v + v') \otimes \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + (\lambda w + w') \otimes \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \lambda v \otimes \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + v' \otimes \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \lambda w \otimes \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + w' \otimes 110 = \lambda f((v, v')) + f((w, w')).$

Aufgabe 4. Wir errinern, dass $f \in \text{Hom}(V, W)$ genau dann linear ist, wenn für eine Basis B von V gilt, dass f(B) linear unabhängig ist.

Seien B_1 und B_2 Basen von V_1 und V_2 . Dann ist $B := \{v_1 \otimes v_2 \mid v_1 \in B_1, v_2 \in B_2\}$ eine Basis von $V_1 \otimes V_2$.

Weil f_1 injektiv ist, ist $f(B_1)$ linear unabhängig. Wir erganzen sie zu eine Basis B'_1 von W_1 .

Analog ist $f(B_2)$ linear unabhängig und wir eganzen sie zu eine Basis B'_2 von W_2 .

Dann ist $B' := \{w_1 \otimes w_2 \mid w_1 \in B'_1, w_2 \in B'_2\}$ eine Basis von $W_1 \otimes W_2$.

Seien $v_1 \in B_1$ und $v_2 \in B_2$. Dann gilt $(f_1 \otimes f_2)(v_1 \otimes v_2) = f_1(v_1) \otimes f_2(v_2) \in B'$ Also $(f_1 \otimes f_2)(B) \subseteq B'$ ist linear unabhängig, d.h., $(f_1 \otimes f_2)$ ist injektiv.

Aufgabe 5.

- a) Sei $w = e_1 \otimes e_1 + e_2 \otimes e_2$. Dann ist w kein rein Tensor: angenommen, dass $w = \begin{pmatrix} a \\ b \end{pmatrix} \otimes \begin{pmatrix} c \\ d \end{pmatrix}$ gilt. Dann $w = ac(e_1 \otimes e_1) + ad(e_1 \otimes e_2) + bc(e_2 \otimes e_1) + bd(e_2 \otimes e_2)$. Also ac = 1, ad = 0, bc = 0 und bd = 1, und das passt nicht.
- b) Sei $u \in U$ ein rein Tensor. Dann gilt $u = \lambda w = v \otimes v'$. Wenn $\lambda \neq 0$, folgt $w = (\lambda^{-1}v) \otimes v'$, eine Widerspruch. Also $\lambda = 0$, u = 0 und $U \setminus \{0\}$ enthält kein rein Tensor.
- c) Da U ein UVR von V ist, betrachten wir $f: V \to V/U$ definiert durch f(v) = v + U. Also f(v) = 0 gdw. $v \in U$, d.h, ker f = U.

Aufgabe 6.

- a) $(v_1 v_2) \wedge (v_1 + v_2) = v_1 \wedge (v_1 + v_2) v_2 \wedge (v_1 + v_2) = v_1 \wedge v_1 + v_1 \wedge v_2 v_2 \wedge v_1 v_2 \wedge v_2 = 0 + v_1 \wedge v_2 v_2 \wedge v_1 0 = v_1 \wedge v_2 + v_1 \wedge v_2 = 2v_1 \wedge v_2$
- b) $v_1 \wedge (v_1 + v_2) \wedge (v_1 + v_2 + v_3) = v_1 \wedge (v_1 + v_2) \wedge (v_1 + v_2) + v_1 \wedge (v_1 + v_2) \wedge v_3 = 0 + v_1 \wedge v_1 \wedge v_3 + v_1 \wedge v_2 \wedge v_3 = v_1 \wedge v_2 \wedge v_3$