Linear Algebra II Übungsblatt 6 Lösungsvorschlag

Aufgabe 1.

- a) Es gilt f(v) = 10v. Dann gilt auch $f^{2}(v) = f(f(v)) = f(10v) = 10f(v) = 100v$. Also zuletzt gilt $q(v) = f^2(v) - f(v) - 5v = 100v - 10v - 5v = 85v$, d.h., v ist ein EV von q mit EW 85.
- b) Sei $f \in \text{End}(V)$ und v ein EV von f mit EW λ . Dann gilt $f(v) = \lambda v$ und für alle $k \in \mathbb{N}$ gilt $f^k(v) = \lambda^k v$.

Sei
$$p(x) = \sum_{k=0}^{n} a_k x^k \in K[x]$$
. Dann gilt $[p(f)](v) = [\sum_{k=0}^{n} a_k f^k](v) = \sum_{k=0}^{n} [a_k f^k(v)] = \sum_{k=0}^{n} [a_k \lambda^k v] = [\sum_{k=0}^{n} a_k \lambda^k] v = p(\lambda)v$. D.h., v ist ein EV von $p(f)$ mit EW $p(\lambda)$.

Aufgabe 2.

- a) Sei $u \in V$ mit g(u) = 0. Dann ist $g(f(u)) = [f^2 f 5 id_V](f(u)) = f^3(u) f^2(u) f^3(u)$ $5f(u) = f(f^2(u) - f(u) - 5u) = f(g(u)) = f(0) = 0.$
- b) Sei $p(x) = \sum_{k=0}^{n} a_k x^k \in K[x]$ und sei $v \in V$. Dann ist $[p(f)](f(v)) = [\sum_{k=0}^{n} a_k f^k](f(v)) = \sum_{k=0}^{n} [a_k f^k(f(v))] = \sum_{k=0}^{n} [a_k f^{k+1}(v)] = f(\sum_{k=0}^{n} a_k f^k(v)) = f(p(f)(v))$, d.h., f und p(f) kommutieren.

Sei nun $u \in \ker(p(f))$. Dann p(f)(u) = 0. Es gilt aber p(f)(f(u)) = f(p(f)(u)) =f(0) = 0, d.h., $f(u) \in \ker(p(f))$ und $\ker(p(f))$ ist f-invariant.

Aufgabe 3. Sei
$$A = \begin{pmatrix} 4 & 1 & -1 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{pmatrix}$$
. Es gilt $\det(\lambda I_3 - A) = (\lambda - 4)((\lambda - 3)^2 - 1) = (\lambda - 4)(\lambda - 3 - 1)(\lambda - 3 + 1) = (\lambda - 4)^2(\lambda - 2)$. Wir betrachten $4I_3 - A = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, die bet Bang 2 also dim Fig. (4) dim ker(4 I_3 - 4) a. 1. Aben dim Hay (4) 2 also interpret.

$$(\lambda - 4)(\lambda - 3 - 1)(\lambda - 3 + 1) = (\lambda - 4)^2(\lambda - 2)$$
. Wir betrachten $4I_3 - A = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

die hat Rang 2, also dim $\operatorname{Eig}_4(A) = \dim \ker(4I_3 - A) = 1$. Aber dim $\operatorname{Hau}_4(A) = 2$, also ist die jordansche Normalform gleich $\begin{pmatrix} 4 & 1 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

Aufgabe 4. Sei $A \in \mathbb{C}^{5\times 5}$ sodass $\chi_A(x) = (x-2)^3(x-4)(x-6)$. Dann ist dim $\text{Hau}_2(A) = 3$ und dim $\operatorname{Eig}_{2}(A)$ ist entweder 1, 2 oder 3, und die jordansche Normalform von A ist

entweder
$$A_1 = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 6 \end{pmatrix}, A_2 = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 6 \end{pmatrix}$$
 oder $A_3 = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 6 \end{pmatrix}$.

Also ist A ähnlich zu genau eine von A_1 , A_2 , oder A_3 .

Aufgabe 5. Wir schreiben f als jordansche Normal form, d.h., es existiert $S \in GL_n(\mathbb{C})$ sodass $A_f = S^{-1}JS$, wobei A_f die Matrix von f ist und J in jordansche Normalform ist. Dann existiert $D \in \mathbb{C}^{n \times n}$ diagonal und $N \in \mathbb{C}^{n \times n}$ nilpotent mit J = D + N. f_{diag} ist dann angenommen durch $S^{-1}DS$ und f_{nilp} durch $S^{-1}NS$. Aus Bem. 7.2.5 folgt, dass der Nilpotenzgrad von f_{nilp} gleich der maximum der Größe des Jordan-Blocks von N ist.

Aufgabe 6.

a) Sei $A \in \mathbb{C}^{n \times n}$ in jordansche Normalform. Dann existieren $\lambda_1, \ldots, \lambda_\ell \in \mathbb{C}$ und $r_1, \ldots, r_\ell \in \mathbb{N}$ mit $r_1 + \cdots + r_\ell = n$ und sodass für $i \in \{1, \ldots, n\}$ gilt

$$Ae_i = \begin{cases} \lambda_k e_i & \text{wenn } i = r_1 + \dots + r_k + 1 \\ e_{i-1} + \lambda_k e_i & \text{wenn } r_1 + \dots + r_{k-1} + 1 < i < r_1 + \dots + r_k + 1 \end{cases}$$

Es gilt auch

$$A^{T}e_{i} = \begin{cases} \lambda_{k}e_{i} & \text{wenn } i = r_{1} + \dots + r_{k} \\ \lambda_{k}e_{i} + e_{i+1} & \text{wenn } r_{1} + \dots + r_{k-1} < i < r_{1} + \dots + r_{k} \end{cases}$$

Sei $v_i = e_{n-i}$ für jeder $i \in \{1, \dots, n\}$. Dann ist v_1, \dots, v_n eine Basis von C^n , und es gilt

$$A^{T}v_{i} = \begin{cases} \lambda_{k}v_{i} & \text{wenn } i = r_{n} + \dots + r_{k} + 1 \\ v_{i-1} + \lambda_{k}v_{i} & \text{wenn } r_{n} + \dots + r_{k+1} + 1 < i < r_{n} + \dots + r_{k} + 1 \end{cases}$$

D.h., die Matrix von A^T in der Basis v_1, \ldots, v_n ist in jordansche Normalform, mit gleiche Jordan-Blocks als A aber in gegen-Ordnung.

b) Sei $A \in \mathbb{C}^{n \times n}$. Aus Bem. 7.4.8 folgt, dass $J \in \mathbb{C}^{n \times n}$ in jordansche Normalform existiert, die ähnlich zu A ist. Also existiert $S \in GL_n(\mathbb{C})$ mit $A = SJS^{-1}$. Daraus folgt $A^T = (S^T)^{-1}J^TS^T$, also ist A^T ähnlich zu J^T . Aus a) folgt, dass J^T ähnlich zu J ist. D.h., A ist ähnlich zu J die ähnlich zu J^T ist, die ähnlich zu A^T ist. Weil "Ähnlichkeit" eine Äquivalenzrelation ist, ist sie insbesondere transitiv, und A ist ähnlich zu A^T .