Aufgaben der Nachklausur Lineare Algebra II

Aufgabe 1 (2+2+2+2):

Sei V ein endlich-dimensionaler euklidischer \mathbb{R} -Vektorraum und sei v_1, \ldots, v_n eine Orthonormalbasis von V. Wir schreiben im Folgenden $\langle v, v' \rangle$ für das Skalarprodukt von v und v'. Mit der Notation $\langle \ldots \rangle_{\mathbb{R}}$ in (b) hingegen ist der von den angegebenen Vektoren erzeugte Untervektorraum gemeint.

- (a) Wir nehmen an, dass $n \ge 4$ ist. Berechnen Sie das Skalarprodukt $\langle v_1 + 2v_2, 3v_2 + v_4 \rangle$.
- (b) Sei $1 \leq d \leq n-1$ und $U = \langle v_1, \dots, v_d \rangle_{\mathbb{R}}$. Zeigen Sie, dass $U^{\perp} = \langle v_{d+1}, \dots, v_n \rangle_{\mathbb{R}}$ gilt.
- (c) Sei U wie in (b), sei nun außerdem $r \in \mathbb{R}$ gegeben, und sei $\beta \colon V \times V \to \mathbb{R}$ definiert durch

$$\beta(u_1+u_1',u_2+u_2')=\langle u_1,u_2\rangle+r\langle u_1',u_2'\rangle \qquad \text{für } u_1,u_2\in U \text{ und } u_1',u_2'\in U^\perp.$$

Für welche r ist β positiv definit?

Wie immer ist die Antwort zu beweisen. Sie dürfen dabei ohne Begründung verwenden, dass β eine symmetrische Bilinearform ist.

(d) Sei β wie in (c), für r=-1. Zeigen Sie: Für jedes Element α des Dualraums V^* existiert ein $v_{\alpha} \in V$, so dass für alle $w \in V$ gilt: $\alpha(w) = \beta(v_{\alpha}, w)$.

Aufgabe 2 (2+1+2+1+2):

Sei
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \in \mathbb{R}^{5 \times 5}.$$

- (a) Bestimmen Sie den kleinsten A-invarianten Untervektorraum von \mathbb{R}^5 , der $\begin{pmatrix} 0 \\ 2 \\ 3 \\ 0 \\ 0 \end{pmatrix}$ enthält.
- (b) Sei $v \in \mathbb{R}^5 \setminus \{0\}$: Zeigen Sie: Es existiert ein $m \in \mathbb{N}$, so dass $A^m v \neq 0$ und $A^{m+1}v = 0$ ist.
- (c) Zeigen Sie, dass für v und m wie in (b) gilt: $A^m v \in \langle e_1 \rangle_{\mathbb{R}}$.
- (d) Zeigen Sie: Jeder nicht-triviale A-invariante Untervektorraum von \mathbb{R}^5 enthält e_1 .
- (e) Bestimmen Sie alle 2-dimensionalen A-invarianten Untervektorräume von \mathbb{R}^5 .

Aufgabe 3 (2+2+2+2):

In dieser Aufgabe sei $n \in \mathbb{N}$ und $A \in \mathbb{C}^{n \times n}$.

- (a) Im Fall n=4: Was kann die jordansche Normalform der Matrix A sein, wenn ihr charakteristisches Polynom $\chi_A = (x-2)^2(x-4)(x-6)$ ist?
- (b) Im Fall n=6: Was kann die jordansche Normalform der Matrix A sein, wenn ihr Minimalpolynom $\mu_A=(x-2)^2(x-4)(x-6)$ ist?
- (c) Sei $n \ge 4$. Zeigen Sie: Hat A das Minimalpolynom μ_A aus (b), so hat das charakteristische Polynom von A die Form $(x-2)^r(x-4)^s(x-6)^t$, für $r \ge 2$, $s \ge 1$, $t \ge 1$.
- (d) Zeigen Sie, dass (c) sogar ein genau-dann-wenn ist, im folgenden Sinn: Zu jedem $r \ge 2$, $s \ge 1$, $t \ge 1$ existiert ein $A \in \mathbb{C}^{n \times n}$ (für n geeignet), dessen Minimalpolynom das Polynom μ_A aus (b) ist und dessen charakteristisches Polynom $(x-2)^r(x-4)^s(x-6)^t$ ist.

Aufgabe 4 (2+2+2+2):

Sei $V = \text{Abb}(\mathbb{R}, \mathbb{R})$ die Menge aller Funktionen von \mathbb{R} nach \mathbb{R} , aufgefasst als \mathbb{R} -Vektorraum mit punktweiser Vektoraddition und punktweiser Skalarmultiplikation. Sei $U_1 \subseteq V$ die Menge derjenigen Funktionen $f \in V$, so dass f(a) = f(-a) für alle $a \in \mathbb{R}$ gilt.

- (a) Zeigen Sie: U_1 ist ein Untervektorraum von V.
- (b) Betrachten Sie die Abbildung $g: V \to V$, die eine Funktion $f \in V$ abbildet auf die Funktion $x \mapsto \frac{1}{2}(f(x) + f(-x))$. Zeigen Sie: im $g = U_1$.

Hinweis: Es kann nützlich sein zu prüfen, dass g jedes Element von U_1 auf sich selbst abbildet.

- (c) Sei nun außerdem $U_2 \subseteq V$ die Menge derjenigen Funktionen $f \in V$, so dass f(a) = -f(-a) für alle $a \in \mathbb{R}$ gilt. Sie dürfen im Folgenden ohne Beweis verwenden, dass auch U_2 ein Untervektorraum von V ist. Zeigen Sie, dass $V = U_1 \oplus U_2$ ist. (Hierbei ist die innere direkte Summe gemeint.) Hinweis: Es kann nützlich sein zu prüfen, dass $f g(f) \in U_2$ ist, für $f \in V$ beliebig und g wie in (b).
- (d) Zeigen Sie, dass eine Basis $B \subseteq V$ von V existiert, so dass jede Funktion $f \in B$ eine symmetrische Nullstellenmenge hat, d. h. für jedes $a \in \mathbb{R}$ gilt: $f(a) = 0 \iff f(-a) = 0$. Hinweis: Für einen möglichen Lösungsweg ist es nützlich, die Nullstellenmengen von Funktionen in U_1 und in U_2 zu untersuchen.

Aufgabe 5 (1+2+1+2+2):

Sei $v_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{R}^3$. In dieser Aufgabe dürfen Sie ohne Begründung verwenden, dass alle angegebenen Abbildungen (f, f' und g) linear sind.

- (a) Wir betrachten die Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^3 \otimes \mathbb{R}^3, v \mapsto v_0 \otimes v$. Drücken Sie $f(e_1)$ in der Standard-Basis $\{e_i \otimes e_j \mid 1 \leq i, j \leq 3\}$ von $\mathbb{R}^3 \otimes \mathbb{R}^3$ aus.
- (b) Sei $v_0' \in \mathbb{R}^3$ ein weiterer Vektor und $f' \colon \mathbb{R}^3 \to \mathbb{R}^3 \otimes \mathbb{R}^3, v \mapsto v_0' \otimes v$. Zeigen Sie: Wenn im $f \subseteq \text{im } f'$ gilt, dann ist $v_0' \in \langle v_0 \rangle_{\mathbb{R}}$. Hinweis: Die Bedingung an v_0' folgt sogar schon aus $f(e_1) \in \text{im } f'$.
- (c) Wir betrachten nun die Abbildung $g: \mathbb{R}^3 \to \bigwedge^2 \mathbb{R}^3, v \mapsto v_0 \wedge v$. Drücken Sie $g(e_1)$ in der Standard-Basis $e_1 \wedge e_2, e_1 \wedge e_3, e_2 \wedge e_3$ von $\bigwedge^2 \mathbb{R}^3$ aus.
- (d) Bestimmen Sie den Kern von g.
- (e) Geben Sie eine Basis vom Bild von q an.