Linear Algebra II Nachklausur Lösungsvorschlag

Aufgabe 1.

- a) $\langle v_1 + 2v_2, 3v_2 + v_4 \rangle = \langle v_1, 3v_2 \rangle + \langle v_1, v_4 \rangle + \langle 2v_2, 3v_2 \rangle + \langle 2v_2, v_4 \rangle = 0 + 0 + 6 + 0 = 6.$
- b) Sei $v \in U^{\perp}$. Aus der Vorlesung (Satz 6.2.7) folgt, dass $v = \sum_{i=1}^{n} \langle v, v_i \rangle v_i$. Sei $i \in \{1, \ldots, d\}$, dann gilt $\langle v, v_i \rangle = 0$ da $v_i \in U$ und $v \in U^{\perp}$ sind. Also $v = \sum_{i=d+1}^{n} \langle v, v_i \rangle v_i$, d.h., $v \in \langle v_{d+1}, \ldots, v_n \rangle_{\mathbb{R}}$.

Sei nun $v \in \langle v_{d+1}, \dots, v_n \rangle_{\mathbb{R}}$, also existieren $a_{d+1}, \dots, a_n \in \mathbb{R}$ sodass $v = \sum_{i=d+1}^n a_i v_i$. Sei auch $u \in U = \langle v_1, \dots, v_d \rangle_{\mathbb{R}}$, also existieren $b_1, \dots, b_d \in \mathbb{R}$ sodass $u = \sum_{i=1}^d b_i v_i$. Aus der bilinearität des Skalarprodukt folgt, dass $\langle u, v \rangle = \sum_{i=1}^d \sum_{j=d+1}^n a_i b_j \langle v_i, v_j \rangle = 0$. D.h., $v \in U^{\perp}$, und wir haben $U^{\perp} = \langle v_{d+1}, \dots, v_n \rangle_{\mathbb{R}}$.

c) Angenommen, dass β positiv definit ist. Dann muss $\beta(v_n, v_n) = r \langle v_n, v_n \rangle = r$ positiv sein.

Angenommen nun, dass r > 0 gilt. Sei $v = \in V$ und seien $u \in U$ und $u' \in U^{\perp}$ mit v = u + u'.. Dann gilt $\beta(v, v) = \langle u, u \rangle + r \langle u', u' \rangle$. Weil der Skalarprodukt positiv definit ist, gilt $\langle u, u \rangle \geqslant 0$ und $\langle u', u' \rangle \geqslant 0$, also $\beta(v, v) \geqslant 0$. Um $\beta(v, v) = 0$ zu sein, muss sowohl $\langle u, u \rangle$ als $\langle u', u' \rangle$ null sein, also u = 0 und u' = 0, aber dann gilt v = 0. D.h., β ist positiv definit gdw r > 0.

d) Sei $\alpha \in V^*$. Wir setzen $a_i = \alpha(v_i)$ und definieren $v_\alpha = \sum_{i=1}^d a_i v_i - \sum_{i=d+1}^n a_i v_i$. Offensichtlich gilt $\sum_{i=1}^d a_i v_i \in U$ und $-\sum_{i=d+1}^n a_i v_i \in U^{\perp}$.

Offensichtlich gilt
$$\sum_{i=1}^{n} a_i v_i \in U$$
 und $-\sum_{i=d+1}^{n} a_i v_i \in U^{\perp}$.
Sei $w = \sum_{i=1}^{n} b_i v_i \in V$. Dann gilt $\beta(v_{\alpha}, w) = \langle \sum_{i=1}^{d} a_i v_i, \sum_{i=1}^{d} b_i v_i \rangle - \langle -\sum_{i=d+1}^{n} a_i v_i, \sum_{i=d+1}^{n} b_i v_i \rangle = \sum_{i=1}^{n} a_i b_i = \sum_{i=1}^{n} b_i \alpha(v_i) = \alpha(\sum_{i=1}^{n} b_i v_i) = \alpha(w)$.

Aufgabe 2.

a) Es gilt
$$v = \begin{pmatrix} 0 \\ 2 \\ 3 \\ 0 \\ 0 \end{pmatrix}$$
, $Av = \begin{pmatrix} 2 \\ 3 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, $A^2v = \begin{pmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, und $A^3v = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$. Daraus folgt,

dass der kleinster A-invarianter Untervektorraum von \mathbb{R}^5 gleich $\langle v, Av, A^2v \rangle_{\mathbb{R}}$ ist. Offensichtlich gilt $\langle v, Av, A^2v \rangle_{\mathbb{R}} = \langle e_1, e_2, e_3 \rangle_{\mathbb{R}}$.

- b) Da $w \neq 0$ gilt, haben wir $A^0w \neq 0$. Es gilt aber $A^5 = 0$, also $A^5w = 0$. Also gibt es $m \in \{0, 1, 2, 3, 4\}$, sodass $A^mw \neq 0$ und $A^{m+1}w = 0$ gelten.
- c) Sei m wie oben. Dann gilt $A \cdot (A^m w) = 0$, also $A^m w \in \ker A$. A hat rank 4, also dim $\ker A = 1$. Offensichtlich gilt $Ae_1 = 0$, also $e_1 \in \ker A$ und $\ker A = \langle e_1 \rangle_{\mathbb{R}}$. Daraus folgt, dass $A^m w \in \ker A = \langle e_1 \rangle_{\mathbb{R}}$.

- d) Sei U ein A-invariant Untervektorraum von \mathbb{R}^5 , mit $U \neq \{0\}$. Sei $w \in U \setminus \{0\}$, also gilt $A^k w \in U$ für alle $k \in \mathbb{N}$. Sei m wie in (b). Dann gilt $A^m \in \langle e_1 \rangle_{\mathbb{R}} \setminus \{0\}$, d.h., $A^m = \lambda e_1$ mit $\lambda \in \mathbb{R} \setminus \{0\}$. Da $\lambda e_1 \in U$ ist, ist auch $e_1 \in U$.
- e) Sei U ein A-invariant Untervektorraum von \mathbb{R}^5 , mit $\dim(U)=2$. Aus (d) folgt, dass $e_1\in U$ ist. Wir erganzen die Menge $\{e_1\}$ zu eine Basis $\{e_1,v\}$ von U. Dann existieren $a,b\in\mathbb{R}$ mit $Av=ae_1+bv$. Daraus folgt $A^kv=b^{k-1}e_1+b^kv$. Sei m wie in (b), also gilt $A^{m+1}v=b^mae_1+b^{m+1}v=0$, und b muss null sein. D.h., $Av=ae_1$. Offensichtlich muss $v=a'e_1+ae_2$ sein, mit $a\neq 0$, und daraus folgt $U=\langle e_1,e_2\rangle_{\mathbb{R}}$.

Aufgabe 3.

- a) Die jordansche Normalform von A kann entweder $\begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 6 \end{pmatrix}$ oder $\begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 6 \end{pmatrix}$ sein.
- b) Die jordansche Normalform von A ist eine von diese 7:

c) Aus der Vorlesung (Satz 7.5.7) folgt, dass die EW von A genau 2, 4, und 6 sind, das heißt, die jordansche Normalform von A nur 2, 4, und 6 am Diagonal enthält.

Also haben wir, dass χ_A die Form $(x-2)^r(x-4)^s(x-6)^t$ hat. Weil χ_A ein Vielfaches von μ_A ist, gilt $r \ge 2$, $s \ge 1$ und $t \ge 1$.

Dann $\mu_A = (x-2)^2(x-4)(x-6)$, und $\chi_A = (x-2)^r(x-4)^s(x-6)^t$.

Aufgabe 4.

- a) Die Nullabbildung $\mathbf{0} \colon \mathbb{R} \to \mathbb{R}, x \mapsto 0$ liegt in U_1 . Seien $f, g \in U_1$ und $\lambda, a \in \mathbb{R}$. Dann gilt $[f + \lambda g](-a) = f(-a) + \lambda g(-a) = f(a) + \lambda g(a) = [f + \lambda g](a)$, also $f + \lambda g \in U_1$ gilt.
- b) Sei $f \in U_1$ und sei $a \in \mathbb{R}$. Dann gilt $[g(f)](a) = \frac{1}{2}(f(a) + f(-a)) = \frac{1}{2}(f(a) + f(a)) = f(a)$, also g(f) = f. Insbesondere, $U_1 \subseteq \text{im } g$. Sei nun $f \in V$ und $a \in \mathbb{R}$. Dann gilt $[g(f)](-a) = \frac{1}{2}(f(-a) + f(a))$, und $[g(f)](a) = \frac{1}{2}(f(a) + f(-a))$. D.h., $g(f) \in U_1$ liegt, und im $g \subseteq U_1$.
- c) Sei $f \in U_1 \cap U_2$ und sei $a \in \mathbb{R}$. Dann gilt f(a) = f(-a) = -f(a), also f(a) = 0 und f ist die Nullabbildung. D.h., $U_1 \cap U_2 = \{0\}$.
 - Sei nun $f \in V$. Wir betrachten f g(f). Sei $a \in \mathbb{R}$. Dann gilt $[f g(f)](-a) = f(-a) \frac{1}{2}(f(-a) + f(a)) = \frac{1}{2}f(-a) \frac{1}{2}f(a) = \frac{1}{2}(f(-a) + f(a)) f(a) = -[f g(f)](a)$, also $f g(f) \in U_2$ liegt.
 - Aus (b) folgt, dass $g(f) \in U_1$ liegt, also f lässt sich als (f g(f)) + g(f) schreiben, mit $f g(f) \in U_2$ und $g(f) \in U_1$. D.h., $U_1 + U_2 = V$.
- d) Da $U_1 \oplus U_2 = V$ gilt, können wir eine Basis B_1 von U_1 und B_2 von U_2 nehmen, und es gilt, dass $B := B_1 \cup B_2$ eine Basis von V ist.
 - Sei $f \in B$ und sei $a \in \mathbb{R}$ mis f(a) = 0. Dann entweder $f \in U_1$ ist, und f(-a) = f(a) = 0, oder $f \in U_2$ ist, und f(-a) = -f(a) = 0. In beide Fäller, f hat symmetrische Nullstellenmenge.

Aufgabe 5.

- a) $f(e_1) = v_0 \otimes e_1 = (e_1 + e_2 + e_3) \otimes e_1 = e_1 \otimes e_1 + e_2 \otimes e_1 + e_3 \otimes e_1$.
- b) Angenommen, dass im $f \subseteq \text{im } f'$. Insbesondere existiert $w \in \mathbb{R}^3$ mit $f'(w) = f(e_1)$, also $v'_0 \otimes w = e_1 \otimes e_1 + e_2 \otimes e_1 + e_3 \otimes e_1$. Wir schreiben $v'_0 = a_1e_1 + a_2e_2 + a_3e_3$ und $w = b_1e_1 + b_2e_2 + b_3e_3$, mit $a_i, b_i \in \mathbb{R}$. Dann gilt $v'_0 \otimes w = \sum_{1 \leqslant i,j \leqslant 3} a_ib_je_i \otimes e_j = e_1 \otimes e_1 + e_2 \otimes e_1 + e_3 \otimes e_1$. Daraus folgt $a_1b_1 = 1$, also, $b_1 \neq 0$ und $a_1 = b_1^{-1}$, und $a_2b_1 = 1$, also $a_2 = b^{-1} = a_1$, und $a_3b_1 = 1$, also $a_3 = a_2 = a_1$ und $v'_0 = a_1v_0 \in \langle v_0 \rangle_{\mathbb{R}}$.
- c) $g(e_1) = v_0 \wedge e_1 = (e_1 + e_2 + e_3) \wedge e_1 = e_1 \wedge e_1 + e_2 \wedge e_1 + e_3 \wedge e_1 = -e_1 \wedge e_2 e_1 \wedge e_3$.
- d) Aus der Vorlesung (Satz 8.4.20) folgt, dass $v_0 \wedge v = 0$ genau dann gilt, wenn $v \in \langle v_0 \rangle_{\mathbb{R}}$ ist. Also ker $g = \langle v_0 \rangle_{\mathbb{R}}$.
- e) Da ker g dim 1 hat, folgt dass im g dim 2 hat. $g(e_1) = -e_1 \wedge e_2 e_1 \wedge e_3 \in \text{im } g$ liegt, und $g(e_2) = e_1 \wedge e_2 e_2 \wedge e_3 \in \text{im } g$ auch; sie sind linear unabhängig und bilden eine Basis von im g.