Kurzskript Lineare Algebra II

Immi Halupczok

5. Mai 2025

Inhaltsverzeichnis

L	Lineare Algebra I				
1	Ma	thematische Grundbegriffe	3		
	1.1	Lineare Gleichungssysteme	3		
	1.2	Notationen, Mengen und Tupel	6		
	1.3	Abbildungen	10		
	1.4	Partitionen und Äquivalenzrelationen	12		
2	Alg	ebraische Strukturen	13		
	2.1	Gruppen, Ringe, Körper	13		
	2.2	Unter- und Quotientenstrukturen	15		
	2.3	Polynomringe	16		
3	Vektorräume				
	3.1	Definition	18		
	3.2	Untervektorräume	19		
	3.3	Lineare Unabhängigkeit	20		
	3.4	Basis und Dimension	20		
4	Lin	eare Abbildungen und Matritzen	22		
	4.1	Matrizen	22		
	4.2	Lineare Abbildungen	24		
	4.3	Homomorphiesatz und Rang	26		
	4.4	Anwendung auf lineare Gleichungssysteme	27		
5	End	lomorphismen	29		
	5.1	Determinanten	29		

	5.2	Eigenwerte und Eigenvektoren	32
6	Euk	didische und unitäre Vektorräume	33
	6.1	Skalarprodukte	33
	6.2	Isometrien und Orthonormalbasen	34
Li	inea	re Algebra II	36
	6.3	Orthogonale Komplemente	36
	6.4	Bilinear- und Sesquilinearformen	36
	6.5	Der Spektralsatz und Folgerungen	37
7	Die	Jordansche Normalform	39
	7.1	Direkte Summen und Komplemente	39
	7.2	Nilpotente Endomorphismen	40
	7.3	Die Hauptraumzerlegung	41

Lineare Algebra I

Mi 9.10.

1 Mathematische Grundbegriffe

1.1 Lineare Gleichungssysteme

- **Definition 1.1.1 (unpräzise)** (a) Die natürlichen Zahlen sind 0, 1, 2, 3, ... Die Menge aller natürlichen Zahlen wird mit \mathbb{N} bezeichnet, d. h. statt "x ist eine natürliche Zahl" schreiben wir auch " $x \in \mathbb{N}$ ".
 - (b) Die ganzen Zahlen sind ..., -2, -1, 0, 1, 2, ... Die Menge der ganzen Zahlen wird mit \mathbb{Z} bezeichnet.
 - (c) Eine rationale Zahl ist eine Zahl, die sich als Bruch a schreiben lässt, wobei a eine beliebige ganze Zahl ist und b eine ganze Zahl ungleich 0. Die Menge der rationalen Zahlen wird mit Q bezeichnet.
 - (d) (Reelle Zahlen werden in der Analysis-Vorlesung definiert.) Die Menge der reellen Zahlen wird mit ℝ bezeichnet.

Konvention 1.1.2 Eine Variable ist ein Symbol, das für ein mathematisches Objekt (ihr Wert) stehen kann. Als Symbol werden meist Buchstaben verwendet, z. T. mit "Dekorationen" (z. B. a', \tilde{a} , \hat{a} , \underline{a} , ...). Kommt das gleiche Symbol mit verschiedenen Dekorationen vor, so sind dies verschiedene Variablen. Ist der Wert einer Variablen festgelegt, so nennt man sie oft auch eine Konstante.

Konvention 1.1.3 Symbole können außerdem ein oder mehrere mathematische Objekte als Indizes erhalten (z. B. $a_1, a_2, a_{7,8}$). Das gleiche Symbol mit verschiedenen Indizes sind verschiedene Variablen.

Definition 1.1.4 Sei $n \ge 1$ eine natürliche Zahl und seien a_1, \ldots, a_n und b reelle Zahlen. Einen Ausdruck der Form

$$a_1x_1 + \dots + a_nx_n = b$$

(wobei $x_1, ..., x_n$ Variablen sind), nennt man eine **lineare Gleichung** (in $x_1, ..., x_n$).

Mo 14.10.

- Definition 1.1.5 (a) Sind a₁ und a₂ beliebige mathematische Objekte, so schreibt man (a₁, a₂) für das (geordnete) Paar bestehend aus a₁ und a₂. Man nennt a₁ und a₂ die Einträge (oder Komponenten) des Tupels (a₁, a₂). Zwei Paare (a₁, a₂) und (b₁, b₂) werden als gleich angesehen (als Formel: "(a₁, a₂) = (b₁, b₂)"), wenn die entsprechenden Einträge gleich sind, also wenn sowohl a₁ = b₁ als auch a₂ = b₂ ist.
 - (b) Analog definiert man **Tripel** (a_1, a_2, a_3) , **Quadrupel** (a_1, a_2, a_3, a_4) , etc., und allgemeiner n-**Tupel** (a_1, \ldots, a_n) für beliebige $n \ge 1$.
 - (c) Die Menge der n-Tupel, deren Einträge alle aus einer gegebenen Menge M stammen, wird mit M^n bezeichnet.

 $^{^1}$ Es besteht unter Mathematikern keine Einigkeit darüber, ob 0 als natürliche Zahl bezeichnet wird oder nicht. In dieser Vorlesung ist 0 eine natürliche Zahl.

Definition 1.1.6 Eine Lösung einer linearen Gleichung

$$a_1x_1 + \dots + a_nx_n = b$$

ist ein n-Tupel $(c_1,\ldots,c_n)\in\mathbb{R}^n$, so dass

$$a_1c_1 + \dots + a_nc_n = b$$

gilt.

Lemma 1.1.7 (a) Sei $L := ,a_1x_1 + \cdots + a_nx_n = b$ " eine lineare Gleichung, sei $r \in \mathbb{R}$, und sei $\underline{c} \in \mathbb{R}^n$ eine Lösung von L. Dann ist \underline{c} auch eine Lösung des r-fachen von der Gleichung L, also der linearen Gleichung

$$(ra_1)x_1 + \cdots + (ra_n)x_n = rb$$

(b) Wir nehmen nun außerdem an, dass $L' := ,a'_1x_1 + \cdots + a'_nx_n = b'$ " eine weitere lineare Gleichung ist und dass \underline{c} auch eine Lösung von L' ist. Dann ist \underline{c} auch eine Lösung der Summe von L und L', also der linearen Gleichung

$$(a_1 + a'_1)x_1 + \dots + (a_n + a'_n)x_n = (b + b')$$
".

Definition 1.1.8 Seien $m \geq 1$ und $n \geq 1$ natürliche Zahlen. Ein **lineares** Gleichungssystem in einem Variablentupel $\underline{x} = (x_1, \ldots, x_n)$ ist ein Tupel $\underline{L} = (L_1, \ldots, L_m)$, wobei jedes L_i eine lineare Gleichung in \underline{x} ist. Eine Lösung von \underline{L} ist ein Tupel $\underline{c} \in \mathbb{R}^n$, das Lösung von jeder der Gleichungen L_1, \ldots, L_m ist.

Definition 1.1.9 Seien $m, n \ge 1$ natürliche Zahlen.

(a) Eine $m \times n$ -Matrix (über \mathbb{R}) ist ein $m \cdot n$ -Tupel A von reellen Zahlen, die in einem Rechteck mit m Zeilen und n Spalten geschrieben werden. Die Einträge einer Matrix werden üblicherweise mit Paaren (i,j) für $1 \le i \le m, 1 \le j \le n$ indiziert, wobei i die Zeile und j die Spalte angibt; also:

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$

(b) Die (erweiterte) Koeffizientenmatrix eines linearen Gleichungssystems

$$\underline{L} := \begin{pmatrix} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n = b_m \end{pmatrix}$$
(1)

ist die $m \times (n+1)$ -Matrix

$$\begin{pmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} & b_1 \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} & b_2 \\
\vdots & \vdots & & \vdots & \vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n} & b_m
\end{pmatrix}.$$
(2)

(Der senkrechte Strich hat formal keine Bedeutung. Er dient nur dazu, optisch sichtbar zu machen, das die Zahlen rechts davon die rechten Seiten der Gleichungen sind.)

Definition 1.1.10 Sei

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$

eine Matrix. Die folgenden Umformungen von A nennt man **elementare Zei**lentransformationen von A:

- (TAU) Tausche zwei Zeilen.
- (MUL) Wähle eine reelle Zahl $r \neq 0$ und eine Zeile i; multipliziere alle Einträge der gewählten Zeile mit r. Die i-te Zeile von A wird also ersetzt durch

$$(ra_{i,1} \quad ra_{i,2} \quad \dots \quad ra_{i,n})$$
.

(ADD) Wähle eine reelle Zahl r und zwei verschiedene Zeilen i und j; addiere zu jedem Eintrag der i-ten Zeile das r-fache des entsprechenden Eintrags der j-ten Zeile. Die i-te Zeile von A wird also ersetzt durch

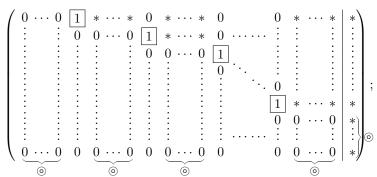
$$(a_{i,1} + ra_{j,1} \quad a_{i,2} + ra_{j,2} \quad \dots \quad a_{i,n} + ra_{j,n}).$$

Lemma 1.1.11 Sei A eine beliebige Matrix und sei A' eine Matrix, die man aus A durch eine elementare Zeilentransformation erhält. Dann gibt es auch eine elementare Zeilentransformation, die aus A' wieder A macht.

Mi 16.10.

Satz 1.1.12 Seien \underline{L} und \underline{L}' zwei lineare Gleichungssysteme, und seien A und A' ihre Koeffizientenmatrizen. Wir nehmen an, dass man A' aus A durch eine elementare Zeilentransformation erhalten kann. Dann haben \underline{L} und \underline{L}' die selben Lösungen.

Definition 1.1.13 Man sagt, eine (Koeffizienten-)Matrix ist in **Normalform**, wenn sie die folgende Form hat:



Hierbei steht jedes "*" für eine beliege reelle Zahl, und die mit ⊚ markierten Zeilen und Spalten müssen nicht vorhanden sein. Die eingekästelten 1en (d. h. die ersten nicht-0-Einträge jeder Zeile) nennt man Pivot-Einträge (oder auch Pivot-Elemente).

Satz 1.1.14 (Gauß-Elimination) Jede Matrix kann durch endlich viele elementare Transformationen in Normalform gebracht werden.

Bemerkung 1.1.15 Die Lösungen eines beliebigen linearen Gleichungssystems \underline{L} lassen sich wie folgt bestimmen: Bringe zunächst die Koeffizientenmatrix von \underline{L} in Normalform. (Dadurch ändern sich nach Satz 1.1.12 die Lösungen nicht.) Danach lassen sich folgendermaßen alle Lösungen von \underline{L} ablesen:

- (a) Existiert in der Koeffizientenmatrix eine Zeile der Form $(0 \cdots 0 \mid b_i)$ mit $b_i \neq 0$, so besitzt \underline{L} keine Lösung.
- (b) Existiert keine solche Zeile, so besitzt \underline{L} Lösungen. In diesem Fall lassen sich sämtliche Lösungen folgendermaßen erhalten:
 - (i) Für jedes $j \leq n$: Enthält die j-te Spalte keinen Pivot-Eintrag, so kann x_j beliebig gewählt werden.
 - (ii) Danach sind die restlichen Variablen eindeutig festgelegt: Enthält die j-te Spalte ein Pivot-Element in der i-ten Zeile, so hat die i-te Gleichung die Form

$$x_j + a_{i,j+1}x_{j+1} + \dots + a_{i,n}x_n = b_i,$$

wobei nur diejenigen Koeffizienten $a_{i,k}$ ungleich null sein können, deren Spalte kein Pivot-Eintrag enhält. Insbesondere haben wir die entsprechenden x_k bereits in Schritt (i) gewählt. Diese Gleichung legt also x_j eindeutig fest, nämlich: $x_j = b_i - a_{i,j+1}x_{j+1} - a_{i,j+2}x_{j+2} - \cdots - a_{i,n}x_n$.

Mo 21.10.

Korollar 1.1.16 Ist \underline{L} ein lineares Gleichungssystem mit mehr Variablen als Gleichungen, so hat \underline{L} entweder gar keine Lösung oder unendlich viele Lösungen.²

1.2 Notationen, Mengen und Tupel

Manchmal möchte man mathematische Aussagen kompakt mit Symbolen aufschreiben, statt als ausgeschriebene (deutsche) Sätze. Dafür gibt es einige Notationen.³

Notation 1.2.1 Im folgenden sind A und B zwei mathematische Aussagen.

- (a) " $A \wedge B$ " bedeutet: Sowohl Aussage A als auch Aussage B ist wahr.
- (b) " $A \vee B$ " bedeutet: Mindestens eine der Aussagen A und B ist wahr.
- (c) " $\neg A$ " bedeutet: Die Aussage A ist nicht wahr.
- (d) " $A \Rightarrow B$ " bedeutet: Wenn A wahr ist, dann ist auch B wahr. Man schreibt auch " $B \Leftarrow A$ " und sagt auch "A **impliziert** B" oder "B **folgt aus** A".

²Achtung: Wir werden später lineare Gleichungen auch in einem allgemeineren Kontext sehen. In der Verallgemeinerung muss dieses Korollar etwas abgewandelt werden; siehe Bemerkung 2.1.12.

³Das ist insbesondere nützlich für Tafelanschriebe und eigene Notizen. In ausformulierten Beweisen, die jemand anderes lesen und verstehen können soll, ist es jedoch oft besser, Dinge als Text auszuformulieren.

(e) " $A \Leftrightarrow B$ " bedeutet: Wenn A wahr ist, dann auch B, und wenn B wahr ist, dann auch A.

Man sagt auch "A ist **äquivalent** zu B" oder "A und B sind äquivalent" oder "A gilt genau dann, wenn B gilt".

Notation 1.2.2 Im folgenden ist A eine mathematische Aussage, in der eine Variable x vorkommt.

- (a) "∀x ∈ M: A" bedeutet: Man kann in der Aussage A für x jedes beliebige Element von M einsetzen und erhält immer eine wahre Aussage. Man sagt auch: "A gilt für alle x aus M". Manchmal schreibt man auch "A ∀x ∈ M".
- (b) "∃x ∈ M: A" bedeutet: Es gibt (mindestens) ein Element aus M, das man für x einsetzen kann, so dass A wahr wird.
 Man sagt auch: "Es existiert ein x aus M, so dass A wahr ist." (Mit "existiert ein" ist immer "existiert mindestens ein" gemeint.)
- (c) $,\exists^{-1}x \in M: A$ " bedeutet: Es existiert genau ein Element x von M, für das A wahr ist. (Für alle anderen x aus M ist A falsch.) Manche Leute schreiben auch $,\exists!x \in M: A$ "

Statt " $\forall x \in M$: A" schreibt man auch " $\forall x$: A", wenn, man M aus dem Kontext erraten kann; und analog bei (b), (c).

Statt ", $\forall x \in M : \forall y \in M : A$ " schreibt man auch ", $\forall x, y \in M : A$ ", etc.; und analog bei (b).

Bemerkung 1.2.3 Die Symbole \forall und \exists nennt man Quantoren. (" \forall " ist der All-Quantor, " \exists " ist der Existenz-Quantor.)

Definition 1.2.4 (unpräzise) (a) Eine **Menge** M ist ein mathematisches Objekt, das dadurch charakterisiert ist, welche mathematischen Objekte ihre **Elemente** sind. Statt "x ist ein Element von M" sagt man auch: "x liegt in M" oder "x ist aus M" oder "M enthält x". Notation dafür: " $x \in M$ "

Zwei Mengen M_1 und M_2 sind also gleich (als Formel: " $M_1 = M_2$ ") genau dann, wenn für jedes mathematische Objekt x gilt: $x \in M_1 \Leftrightarrow x \in M_2$.

- (b) Weitere Notationen:
 - $x \notin M$ bedeutet: x ist kein Element von M.
 - $x, y \in M$ bedeutet: sowohl x als auch y sind Elemente von M; etc.
- (c) Die **leere Menge** ist die Menge, die gar keine Elemente hat. Sie wird mit \emptyset bezeichnet.

Konvention 1.2.5 *Ist* A *eine* Aussage und $M = \emptyset$, *so* wird " $\forall x \in M : A$ " als wahr angesehen.

Definition 1.2.6 Sind x_1, \ldots, x_n beliebige mathematische Objekte, so schreiben wir

$$\{x_1,\ldots,x_n\}$$

für die Menge, deren Elemente genau x_1, \ldots, x_n sind, also:

$$y \in \{x_1, \dots, x_n\} \iff (y = x_1 \vee \dots \vee y = x_n).$$

- **Konvention 1.2.7** (a) Eine ein-elementige Menge {a} wird nicht als das gleiche angesehen wie das Element a selbst.
 - (b) Ist ein Element A von M selbst wieder eine Menge, so werden die Elemente von A nicht automatisch auch als Elemente von M angesehen.

Mi 23.10.

Definition 1.2.8 Ist M eine Menge, so schreiben wir #M für die Anzahl der Elemente von M; man nennt dies auch die **Kardinalität** (oder **Mächtigkeit**) von M. (Statt #M kann man auch |M| schreiben.) Genauer: Lässt sich $M = \{x_1, \ldots, x_n\}$ schreiben für paarweise veschiedene x_i , so nennen wir M endlich und setzen #M := n. Lässt sich M nicht so schreiben, so nennen wir M unendlich.

Notation 1.2.9 Ist M eine Menge und A eine Aussage, die eine Variable x enthält, so schreiben wir $\{x \in M \mid A\}$ für die Menge derjenigen Elemente x von M, für die die Aussage A wahr ist. (Manche Leute scheiben auch " $\{x \in M : A\}$ " oder " $\{x \in M : A\}$ ".) Wenn man M aus dem Kontext erraten kann, schreibt man oft auch nur $\{x \mid A\}$. Ist A' eine weitere Aussage, so schreibt man statt $\{x \mid A \land A'\}$ oft auch $\{x \mid A, A'\}$.

Definition 1.2.10 Seien M_1 und M_2 Mengen.

- (a) M_1 heißt **Teilmenge** von M_2 , wenn jedes Element von M_1 auch ein Element von M_2 ist. Man sagt auch: " M_1 ist eine **Untermenge** von M_2 "; oder: " M_2 ist eine **Obermenge** von M_1 ". Notationen: $M_1 \subseteq M_2$; $M_2 \supseteq M_1$.
- (b) Die Notation $M_1 \subsetneq M_2$ bedeutet: $M_1 \subseteq M_2$ aber $M_1 \neq M_2$; man sagt: " M_1 ist eine **echte Teilmenge** von M_2 ."

Bemerkung: In Analogie zu "<" und "≤" wäre es naheliegend, dass man statt " \subsetneq " auch " \subset " schreiben kann. Allerdings wird \subseteq deutlich häufiger benötigt als \subsetneq ; deshalb ist es üblicher, dass " \subset " für " \subseteq " steht.

Definition 1.2.11 Seien M_1 und M_2 Mengen.

- (a) Die **Vereinigung** von M_1 und M_2 ist $M_1 \cup M_2 := \{x \mid x \in M_1 \lor x \in M_2\}$ (Man sagt auch " M_1 vereinigt M_2 ").
- (b) Der **Schnitt** von M_1 und M_2 ist $M_1 \cap M_2 := \{x \mid x \in M_1 \wedge x \in M_2\}$ (Man sagt auch " M_1 **geschnitten** M_2 "). Ist $M_1 \cap M_2 = \emptyset$, so sagt man, die Mengen M_1 und M_2 sind **disjunkt**.
- (c) Die **Differenz** von M_1 und M_2 ist $M_1 \setminus M_2 := \{x \mid x \in M_1 \land x \notin M_2\}$ (Man sagt auch " M_1 ohne M_2 ").

Notation 1.2.12 Sei I eine Indexmenge und sei M_i eine Menge für jedes $i \in I$. (Mit **Indexmenge** ist eine normale Menge gemeint, deren Elemente als Indizes verwendet werden.)

(a) $\bigcup_{i \in I} M_i$ ist die Menge derjenigen Elemente, die in mindestens einer der Mengen M_i liegen, also formal:

$$x \in \bigcup_{i \in I} M_i \iff \exists i \in I \colon x \in M_i$$

$$\label{eq:man_loss} \textit{Im Fall } I = \emptyset \textit{ setzt } man \bigcup_{i \in I} M_i := \emptyset.$$

(b) $\bigcap_{i \in I} M_i$ ist die Menge derjenigen Elemente, die in jeder der Mengen M_i liegen, also formal:

$$x \in \bigcap_{i \in I} M_i \iff \forall i \in I \colon x \in M_i$$

$$\label{eq:interpolation} \textit{Im Fall } I = \emptyset \textit{ ist } \bigcap_{i \in I} M_i \textit{ nicht definiert}.$$

Notation 1.2.13 *Ist* $I = \{m, m+1, ..., n\}$ *für ganze Zahlen* $m \le n$, *so schreibt man statt*

$$\bigcup_{i \in I} M_i \quad und \quad \bigcap_{i \in I} M_i$$

auch

$$\bigcup_{i=m}^{n} M_{i} \quad und \quad \bigcap_{i=m}^{n} M_{i}.$$

Definition 1.2.14 Ist M eine Menge, so bezeichnet

$$\mathcal{P}(M) := \{ A \mid A \subseteq M \}$$

die Menge aller Teilmengen von M; $\mathcal{P}(M)$ wird **Potenzmenge** von M genannt.

Definition 1.2.15 Sind M_1 und M_2 Mengen, so schreibt man $M_1 \times M_2$ für die Menge der Paare (x_1, x_2) bestehend aus einem Element x_1 von M_1 und einem Element von x_2 von M_2 . Man nennt $M_1 \times M_2$ das **kartesische Produkt** von M_1 und M_2 . Analog schreibt man $M_1 \times M_2 \times M_3$ für die Menge der Tripel, etc.

Bemerkung 1.2.16 Laut Definition 1.1.5 ist also M^n eine Kurzschreibweise für $\underbrace{M \times \cdots \times M}_{n \ mal}$.

Notation 1.2.17 Für ein Tupel (a_1, \ldots, a_n) verwendet man als Kurzschreibweise auch $(a_i)_{1 \leq i \leq n}$. Ist aus dem Kontext klar, dass i von 1 bis n laufen soll, so schreibt man auch noch kürzer $(a_i)_i$.

Konvention 1.2.18 (a) Man unterscheidet nicht zwischen einem 1-Tupel (a) und dem Element a selbst. Anders ausgedrückt: $M^1 = M$.

- (b) Wenn manche Einträge eines Tupels selbst wieder Tupel sind, fasst man das oft als ein langes Tupel auf, also z. B. (a,(b,c)) = (a,b,c). Anders ausgedrückt: Man indentifiziert oft verschiedene Klammerungen von kartesischen Produkten, also z. B.: $A \times (B \times C) = A \times B \times C$.
- (c) Manchmal ist es praktisch, auch 0-Tupel zu betrachten. Es gibt nur ein einziges 0-Tupel; es ist das einzige Element von M⁰ (egal, was M ist).

1.3 Abbildungen

Definition 1.3.1 Seien A und B Mengen. Eine **Abbildung** (oder **Funktion**) von A nach B ist ein mathematisches Objekt f, das jedem Element $a \in A$ ein Element $f(a) \in B$ zuordnet. Ist f(a) = b, so sagt man, f bildet a auf b ab.

Formal ist eine Abbildung f gegeben durch drei Mengen A, B und $G \subseteq A \times B$, mit der Eigenschaft, dass für jedes $a \in A$ genau ein $b \in B$ existiert mit $(a,b) \in G$. Für jedes $a \in A$ bezeichnet f(a) dann das (eindeutige) Element von B, so dass $(a, f(a)) \in G$ ist.

Man nennt A den **Definitionsbereich** von f, B den **Wertebereich** von f und G den **Graph** von f.

Mo 28.10.

Bemerkung 1.3.2 Ist f eine Abbildung von A nach B und ist $B' \subseteq B$ eine Teilmenge, so dass $f(a) \in B'$ gilt für jedes $a \in A$, so fassen wir f manchmal auch als Abbildung von A nach B' auf, auch wenn es sich formal gesehen um eine andere Abbildung handelt.⁴

Definition 1.3.3 Sind A und B Mengen, so bezeichnet Abb(A, B) die Menge aller Abbildungen von A nach B.

Notation 1.3.4 Statt $,f \in Abb(A,B)$ " schreibt man auch $,f \colon A \to B$ " oder $,A \xrightarrow{f} B$ ". Statt ,f(a) = b" schreibt man auch $,f \colon a \mapsto b$ ". Ist T ein mathematischer Ausdruck, in dem a als Variable vorkommt, so bedeutet

$$f: A \to B, a \mapsto T,$$

 $dass\ f \in Abb(A,B)$ die Abbildung ist, die jedes $a \in A$ auf den entsprechenden Wert von T abbildet.

Konvention 1.3.5 *Ist* $f: A_1 \times A_2 \to B$, so schreibt man statt $f((a_1, a_2))$ auch $f(a_1, a_2)$ (für $a_1 \in A_1, a_2 \in A_2$). Und analog für $f: A_1 \times A_2 \times A_3 \to B$, etc.

Definition 1.3.6 Die **Identität** auf einer Menge A ist die Abbildung $id_A : A \rightarrow A, a \mapsto a$.

Definition 1.3.7 Seien A, B, C Mengen und seien $f: A \to B$ und $g: B \to C$ Abbildungen. Dann ist die **Verkettung** (man sagt auch "**Verknüpfung**") von f und g die Abbildung

$$g \circ f \colon A \to C, a \mapsto g(f(a)).$$

 $,g \circ f$ " spricht man oft ,g nach f" aus.

Definition 1.3.8 Ist $f: A \to A$ eine Abbildung von A in sich selbst und ist $k \in \mathbb{N}$, so setzen wir $f^k := \underbrace{f \circ \cdots \circ f}_{} falls \ k \geq 1$, und $f^0 := \mathrm{id}_A$.

⁴Manchmal wird gar nicht zwischen diesen $f: A \to B$ und $f: A \to B'$ unterschieden; das würde in dieser Vorlesung allerdings manchmal zu Verwirrung führen.

Notation 1.3.9 Ist A eine Aussage, in der eine Variable x vorkommt und $f: B \to C$ eine Abbildung, so schreibt man $\{f(x) \mid A\}$ für die Menge all der Elemente von C, die man erhält, wenn man f auf alle Elemente $x \in B$ anwendet, für die die Aussage A wahr ist; also formal:

$$\{f(x) \mid A\} = \{c \in C \mid \exists x \in B \colon A\}.$$

Definition 1.3.10 *Seien* A *und* B *Mengen, und sei* $f: A \rightarrow B$.

- (a) Ist $A' \subseteq A$, so ist $f(A') := \{f(a) \mid a \in A'\}$ das **Bild von** A' unter f.
- (b) Das Bild unter f des gesamten Definitionsbereichs A wird auch einfach nur **Bild** von f genannt. Notation dafür: im f := f(A).
- (c) Ist $B' \subseteq B$, so ist $f^{-1}(B') := \{a \in A \mid f(a) \in B'\}$ das **Urbild von** B' unter f.
- (d) Ist $b \in B$, so schreibt man oft auch $f^{-1}(b)$ statt $f^{-1}(\{b\})$. Besteht die Menge $f^{-1}(b)$ aus genau einem Element a, so meint man mit $f^{-1}(b)$ oft auch nur dieses Element a (und nicht die Menge $\{a\}$).

Definition 1.3.11 Seien A und B Mengen, und sei $f: A \rightarrow B$.

- (a) f heißt **injektiv**, wenn für alle $b \in B$ gilt: $\#(f^{-1}(b)) \le 1$. Man sagt auch "f ist eine **Injektion** von A nach B" und schreibt dafür " $f: A \hookrightarrow B$ ".
- (b) f heißt **surjektiv**, wenn für alle $b \in B$ gilt: $\#(f^{-1}(b)) \ge 1$. Man sagt auch "f ist eine **Surjektion** von A nach B" und schreibt dafür " $f: A \rightarrow B$ ".
- (c) f hei β t **bijektiv**, wenn für alle $b \in B$ gilt: $\#(f^{-1}(b)) = 1$. Man sagt auch "f ist eine **Bijektion** zwischen A und B" und schreibt dafür " $f: A \xrightarrow{1:1} B$ ".

Satz 1.3.12 Seien A und B Mengen und sei $f: A \to B$ eine Abbildung.

- (a) Die Abbildung f ist bijektiv genau dann, wenn eine Abbildung $g: B \to A$ existiert, so dass $f \circ g = \operatorname{id}_B$ und $g \circ f = \operatorname{id}_A$ gilt.
- (b) Ist dies der Fall, so ist die Abbildung g aus (a) eindeutig durch f festgelegt.

Mi 30.10.

Definition 1.3.13 Ist $f: A \to B$ bijektiv, so nennt man die Abbildung g aus Satz 1.3.12 das Inverse von f (oder auch auch "Umkehrabbildung von f"). Die Notation für diese Abbildung ist f^{-1} . Im Fall B = A setzt man auch $f^{-k} := (f^{-1})^k$ für $k \in \mathbb{N}$.

Bemerkung 1.3.14 Bei bijektiven Abbildungen $f: A \to B$ passt die Notation f^{-1} für die Umkehrabbildung mit der Notation für Urbilder (Definition 1.3.10) zusammen: Für $B' \subseteq B$ ist das Urbild von B' unter f das selbe wie das Bild von B' unter der Umkehrabbildung f^{-1} , und für $b \in B$ ist das Urbild von b unter f genau das Bild von b unter f^{-1} .

Definition 1.3.15 Ist $f: A \to B$ eine Abbildung und $A' \subseteq A$ eine Teilmenge, so schreiben wir $f|_{A'}$ für die **Einschränkung** von f auf A', d.h. $f|_{A'}: A' \to B, a \mapsto f(a)$.

Satz 1.3.16 Seien A und B endliche Mengen gleicher Kardinalität. Dann gilt für Abbildungen $f \in Abb(A, B)$: Ist f injektiv <u>oder</u> surjektiv, so ist f bereits bijektiv.

1.4 Partitionen und Äquivalenzrelationen

Definition 1.4.1 Eine **Partition** einer Menge M ist eine Menge P von nichtleeren Teilmengen von M (die man die **Teile** von P nennt), so dass jedes $a \in M$ in genau einem Teil $T \in P$ liegt.

Definition 1.4.2 Sei M eine Menge. Eine **Relation** auf M ist gegeben durch eine Teilmenge $R \subseteq M \times M$. Meistens werden Relationen mit einem Symbol bezeichnet (z. B. ,<"), das man zwischen zwei Elemente $a,b \in M$ schreibt (also z. B. ,a < b"), um auszudrücken, dass $(a,b) \in R$ ist.

Beispiel 1.4.3 Ist P eine Partition einer Menge M, so können wir eine Relation \sim wie folgt definieren: $a \sim b$ genau dann, wenn a und b im gleichen Teil von P liegen. Dies ist eine Äquivalenzrelation im Sinne der folgenden Definition.

Definition 1.4.4 Sei M eine Menge.

- (a) Eine \ddot{A} quivalenzrelation auf M ist eine Relation \sim auf M mit folgenden Eigenschaften:
 - (i) $\forall a \in M : a \sim a \ (\textbf{Reflexivit\"{a}t})$
 - (ii) $\forall a, b \in M : (a \sim b \Rightarrow b \sim a)$ (Symmetrie)
 - (iii) $\forall a, b, c \in M : (a \sim b \land b \sim c \Rightarrow a \sim c)$ (Transitivität) Ist dies der Fall, so wird "a \sim b" oft ausgesprochen als "a ist äquivalent zu b" oder "a und b sind äquivalent".
- (b) Ist \sim eine Äquivalenzrelation auf M und ist $a \in M$, so nennt man

$$a/\sim := \{b \in M \mid b \sim a\}$$

die Äquivalenzklasse von a. Man schreibt

$$M/\sim := \{a/\sim \mid a \in M\}$$

für die Menge all dieser Äquivalenzklassen. (Den Schrägstrich "/" spricht man in diesem Zusammenhang "modulo" aus.)

Mo 4.11.

Beispiel 1.4.5 Sind $a, m \in \mathbb{Z}$ und $m \neq 0$, so schreiben wir " $m \mid a$ " für: "a ist durch m teilbar." (D. h.: $\frac{a}{m}$ ist eine ganze Zahl.) Man sagt auch: m teilt a. Sei nun $m \in \mathbb{N} \setminus \{0\}$. Dann wird durch

$$a \sim b : \iff m \mid a - b$$

eine Äquivalenzrelation auf \mathbb{Z} definiert. Die übliche Notation für diese Relation ist " $a \equiv b \mod m$ "; man sagt: "a ist **kongruent** zu b modulo m" oder "a und b sind **kongruent** modulo m".

Satz 1.4.6 Ist \sim eine Äquivalenzrelation auf einer Menge M, so ist M/\sim eine Partition von M.

Definition 1.4.7 Sei \sim eine Äquivalenzrelation auf einer Menge M.

- (a) Die Abbildung $M \to M/\sim$, $a \mapsto a/\sim$ nennt man die **kanonische Abbildung** von M nach M/\sim .
- (b) Ist $T \in M/\sim und \ a \in T$, so nennt man a auch einen **Repräsentanten** von T.

2 Algebraische Strukturen

2.1 Gruppen, Ringe, Körper

- **Definition 2.1.1** (a) Eine **Gruppe** ist gegeben durch eine Menge G, eine Abbildung $\circ: G \times G \to G$ und ein Element $e \in G$ mit folgenden Eigentschaften:
 - (i) $\forall a, b, c \in G: (a \circ b) \circ c = a \circ (b \circ c) \ (Assoziativität)$
 - (ii) $\forall a \in G : a \circ e = e \circ a = a$ (Man sagt, "e ist ein **neutrales Element** für \circ ".)
 - (iii) $\forall a \in G : \exists b \in G : a \circ b = b \circ a = e$. (Ein solches b heißt **Inverses** von a.)

Die Bedingungen (i)–(iii) nennt man die **Gruppenaxiome**. Man sagt "G ist eine Gruppe" oder " (G, \circ) ist eine Gruppe" oder " (G, \circ, e) ist eine Gruppe", je nachem, was aus dem Kontext klar ist.

(b) Gilt außerdem $\forall a, b \in G : a \circ b = b \circ a$, so nennt man G kommutativ oder abelsch. (Gilt $a \circ b = b \circ a$, so sagt man auch: "a und b kommmutieren".)

Konvention 2.1.2 Eine Abbildung, die man, wie das obige "o", zwischen zwei Elemente schreibt, nennt man oft Verknüpfung.

Beispiel 2.1.3 Ist M eine beliebige Menge, so bildet die Menge aller Bijektion von von M nach M eine Gruppe, mit der Verkettung von Abbildungen als Verknüpfung und id_M als neutralem Element. Diese Gruppe wird auch mit $\mathrm{Sym}(M)$ bezeichnet und die symmetrische Gruppe (auf M) genannt.

Bemerkung 2.1.4 *Ist* G *eine Gruppe und sind* $a, a', b, b' \in G$, *so gilt:*

(a) $a \circ b = a' \circ b \Rightarrow a = a'$ und $a \circ b = a \circ b' \Rightarrow b = b'$ (b) $a \circ b = b \Rightarrow a = e$ und $a \circ b = a \Rightarrow b = e$

Bemerkung 2.1.5 Ist G eine Gruppe und $a \in G$, so existiert genau ein $b \in G$ mit $a \circ b = e$. Insbesondere hat a genau ein Inverses, und um zu prüfen, ob b das Inverse von a ist, reicht es, zu prüfen, ob $a \circ b = e$ ist.

 ${\rm Mi}\ 6.11.$

Notation 2.1.6 *Es gibt mehrere übliche Notationen für Gruppen; im Folgenden sind a, b Gruppenelemente und n* $\in \mathbb{N} \setminus \{0\}$ *:*

(a) Verknüpfung: $a \circ b$; neutrales Element: e; Inverses von a: a^{-1} . Wir definieren auch $a^0 := e$, $a^n := \underbrace{a \circ \cdots \circ a}_{n \text{ mal}}, a^{-n} := (a^{-1})^n$

- (b) Multiplikative Notation: Verknüpfung: $a \cdot b$ (oder ab); neutrales Element: 1; Inverses von a: a^{-1} . Wir definieren auch $\frac{a}{b} := a \cdot b^{-1}$, $a^0 := e$, $a^n := \underbrace{a \cdots a}_{b}$, $a^{-n} := (a^{-1})^n$
- (c) Additive Notation: Verknüpfung: a + b; neutrales Element: 0; Inverses von a: -a. Wir definieren auch a b := a + (-b), $0 \cdot a := 0$, $n \cdot a := \underbrace{a + \cdots + a}_{p, mat}$, $(-n) \cdot a := n \cdot (-a)$

Wenn nicht anders angegeben, verwenden wir Notation (a).

Bemerkung 2.1.7 *Ist* G *eine Gruppe, so gilt für beliebige* $a, b \in G$ *und* $m, n \in \mathbb{Z}$:

- (a) $(a^{-1})^{-1} = a$
- (b) $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$
- (c) $a^{m+n} = a^m \circ a^n$

Definition 2.1.8 (a) Ein **Ring** ist eine Menge R mit zwei Verknüpfungen $+: R \times R \to R$ und $:: R \times R \to R$ und mit Elementen $0 \in R$ und $1 \in R$, so dass die folgenden **Ringaxiome** gelten:

- (i) (R, +, 0) ist eine abelsche Gruppe.
- (ii) · ist assoziativ und 1 ist ein neutrales Element für · .
- (iii) $\forall a, b, c \in R$: $((a+b) \cdot c = a \cdot c + b \cdot c \land a \cdot (b+c) = a \cdot b + a \cdot c)$ $(\textbf{\textit{Distributivit\"{a}t}})$
- (b) Der Ring R heißt kommutativ, wenn die Verknüpfung \cdot kommutativ ist.
- (c) Ein **Körper** ist ein Ring K, bei dem $(K \setminus \{0\}, \cdot, 1)$ eine abelsche Gruppe ist.
- (d) Man nennt 0 auch das Null-Element von R und 1 das Eins-Element.

Beispiel 2.1.9 \mathbb{Z} ist ein Ring. \mathbb{Q} , \mathbb{R} und \mathbb{C} sind Körper.

Konvention 2.1.10 (a) Wenn wir einen Ring R als Gruppe auffassen, ist (R, +) gemeint.

(b) Ist K ein Körper, so setzen wir $K^{\times} := K \setminus \{0\}$ und fassen dies als Gruppe mit \cdot als Verknüpfung auf.

Bemerkung 2.1.11 *Sei* R *ein* Ring *und seien* $a, b \in R$. *Dann gilt:*

- (a) $a \cdot (-b) = -(a \cdot b)$
- (b) $a = 0 \lor b = 0 \Rightarrow a \cdot b = 0$
- (c) Ist R ein Körper, so gilt bei (b) auch die Umkehrung.

Bemerkung 2.1.12 Sei K ein Körper. Fast im gesamten Abschnitt 1.1 kann man "reelle Zahl" durch "Element von K" ersetzen:

- (a) Sind $a_1, \ldots, a_n, b \in K$, so nennt man " $a_1x_1 + \cdots + a_nx_n = b$ " eine lineare Gleichung über K (Definition 1.1.4). Analog definiert man ein lineares Gleichungssystem über K (Definition 1.1.8).
- (b) (Koeffizienten)matrizen, elementare Tranformationen und die Normalform werden auch entsprechend definiert (Definitionen 1.1.9, 1.1.10, 1.1.13), wobei mit 0 und 1 jeweils das entsprechende Element von K gemeint ist.

- (c) Mit einer Ausnahme gelten alle Aussagen aus Abschnitt 1.1 für beliebige Körper K: Lemma 1.1.7, Lemma 1.1.11, Satz 1.1.12, Satz 1.1.14 (Gauß-Elimination), Bemerkung 1.1.15.
- (d) Die Ausnahme ist Korollar 1.1.16: Dieses muss wie folgt umformuliert werden: Ist <u>L</u> ein lineares Gleichungssystem mit mehr Variablen als Gleichungen, so hat <u>L</u> entweder gar keine Lösung oder mindestens #K viele Lösungen.

Mo 11.11.

2.2 Unter- und Quotientenstrukturen

Beispiel 2.2.1 (a) Ist K ein $K\"{o}rper$, so ist K^n eine abelsche Gruppe, mit $der\ Verkn\"{u}pfung$

$$(b_1,\ldots,b_n)+(b'_1,\ldots,b'_n):=(b_1+b'_1,\ldots,b_n+b'_n).$$

Wenn wir in Zukunft K^n als Gruppe auffassen, ist diese Verknüpfung gemeint.

(b) Wir betrachten nun eine lineare Gleichung der Form

$$a_1x_1 + \dots + a_nx_n = 0$$

(für $a_1, \ldots, a_n \in K$). Ihre Lösungsmenge $\{(c_1, \ldots, c_n) \in K^n \mid a_1c_1 + \cdots + a_nc_n = 0\}$ auch eine Gruppe (mit der gleichen Verknüpfung). Sie ist eine Untergruppe von K^n im Sinne der folgenden Definition.

- **Definition 2.2.2** (a) Sei (G, \circ, e) eine Gruppe. Ist $H \subseteq G$ eine Teilmenge, so dass $(H, \circ|_{H \times H}, e)$ auch eine Gruppe ist, so nennt man H eine Untergruppe von G und G eine Obergruppe von H.
 - (b) Analog definert man Unter- und Oberringe und Unter- und Oberkörper.

Bemerkung 2.2.3 (a) Möchte man prüfen, dass eine Teilmenge H einer Gruppe G eine Untergruppe ist, so reicht es, folgendes zu prüfen:

- (i) $e \in H$
- (ii) H ist abgeschlossen unter der Verknüpfung, d. h. $sind\ a, b \in H$, so ist auch $a \circ b \in H$.
- (iii) H ist abgeschlossen unter Inversen, d.h. ist $a \in H$, so ist auch $a^{-1} \in H$.
- (b) Analoges gilt für Unterringe und Unterkörper.

Lemma 2.2.4 Eine Teilmenge H einer Gruppe G ist eine Untergruppe genau dann, wenn H nicht leer ist, und wenn für alle $a, b \in H$ gilt: $a \circ b^{-1} \in H$.

Definition 2.2.5 Sei (G, +) eine abelsche Gruppe und $H \subseteq G$ eine Untergruppe. Dann setzen wir $G/H := G/\sim$ (Ausssprache: "G modulo H"), wobei \sim die Äquivalenzrelation ist, die definiert ist durch

$$a \sim b \iff a - b \in H$$
.

Für die Äquivalenzklasse

$$a/\sim = \{a+h \mid h \in H\}$$

schreibt man oft a + H oder \bar{a} , und solche Äquivalenzklassen nennt man auch **Nebenklassen** von H.

Beispiel 2.2.6 Seien $a_1, \ldots, a_n, b \in K$. Wir nehmen an, dass die lineare Gleichung

$$a_1x_1 + \cdots + a_nx_n = b$$

mindestens eine Lösung besitzt. Dann ist ihre Lösungsmenge eine Nebenklasse der Lösungsmenge von

$$a_1x_1 + \dots + a_nx_n = 0.$$

Satz 2.2.7 Ist (G, +, 0) eine abelsche Gruppe und H eine Untergruppe, so ist auch G/H eine Gruppe mit der Verknüpfung

$$\bar{a} + \bar{b} := \overline{a+b}$$

und mit neutralem Element $\bar{0}$. (Man nennt G/H eine **Quotientengruppe** oder **Faktorgruppe**.)

Satz 2.2.8 Sei $n \in \mathbb{N} \setminus \{0\}$. Dann ist $\mathbb{Z}/n\mathbb{Z}$ ein kommutativer Ring, mit der Multiplikation

$$\bar{a} \cdot \bar{b} := \overline{a \cdot b}$$

und mit Eins-Element $\bar{1}$. ($\mathbb{Z}/n\mathbb{Z}$ ist ein **Quotientenring**.)

Satz 2.2.9 Ist p eine Primzahl, so ist der Ring $\mathbb{Z}/p\mathbb{Z}$ sogar ein Körper.

Definition 2.2.10 Der Körper $\mathbb{Z}/p\mathbb{Z}$ (für p prim) wird mit \mathbb{F}_p bezeichnet. Die Elemente von \mathbb{F}_p werden mit $0, 1, \ldots, n-1$ bezeichnet (statt mit $\overline{0}, \overline{1}, \ldots, \overline{n-1}$).

Mi 13.11.

2.3 Polynomringe

Definition 2.3.1 Eine **Folge** von Elementen einer Menge M ist eine Funktion $a: \mathbb{N} \to M$, wobei man a_i statt a(i) schreibt und $(a_i)_{i \in \mathbb{N}}$ statt a. Wir schreiben $M^{\mathbb{N}}$ für die Menge aller Folgen von Elementen von M.

Konvention 2.3.2 Ist A eine mathematische Aussage, in der eine Variable x vorkommt, so bedeutet "A gilt für **fast alle** $x \in M$ ": Es gibt nur endlich viele Elemente in M, für die A nicht gilt. (Anders ausgedrückt: Die Menge $\{x \in M \mid \neg A\}$ ist endlich.)

Definition 2.3.3 Sei R ein kommutativer Ring und x eine Variable.

(a) Ein **Polynom** in x über R ist ein Ausdruck der Form

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
,

für $n \in \mathbb{N}$ und $a_0, \ldots, a_n \in R$. Wir setzen $a_i = 0$ für i > n, so dass ein Polynom formal gegeben ist durch eine Folge $(a_i)_{i \in \mathbb{N}} \in R^{\mathbb{N}}$, wobei fast alle a_i gleich 0 sind.

(b) Die Menge aller Polynome in x über R wird mit R[x] bezeichnet.

Notation 2.3.4 Ist $a_i = 0$ für i > n, so schreiben wir statt $\sum_{i=0}^{n} a_i x^i$ auch $\sum_{i \in \mathbb{N}} a_i x^i$.

Definition 2.3.5 Sind $f = \sum_{i \in \mathbb{N}} a_i x^i$ und $g = \sum_{i \in \mathbb{N}} b_i x^i$ zwei Polynome in R[x], so definieren wir die Summe $f + g \in R[x]$ und das Produkt $f \cdot g \in R[x]$ so, wie man es von Termen erwartet:

$$f + g := \sum_{i \in \mathbb{N}} (a_i + b_i) x^i$$

$$f \cdot g := \sum_{i \in \mathbb{N}} (\sum_{j=0}^{i} a_j b_{i-j}) x^i$$

Satz 2.3.6 Ist R ein kommutativer Ring, so ist auch R[x] ist ein kommutativer Ring.

Mo 18.11.

Konvention 2.3.7 Wir fassen einen kommutativen Ring R als Unterring von R[x] auf, indem wir jedes Element $a \in R$ mit dem Polynom $ax^0 \in R[x]$ identifizieren.

Definition 2.3.8 Sei R ein kommutativer Ring und $f = \sum_{n \in \mathbb{N}} a_n x^n \in R[x]$ ein Polynom über R. Der **Grad** deg $f \in \mathbb{N} \cup \{-\infty\}$ von f ist wie folgt definiert: Ist f nicht das Nullpolynom, so ist deg $f := \max\{i \in \mathbb{N} \mid a_i \neq 0\}$. Den Grad des Nullpolynoms definieren wir als $-\infty$.

Satz 2.3.9 Sei R ein kommutativer Ring und seien $f, g \in R[x]$. Dann ist $\deg(f \cdot g) \leq \deg f + \deg g$. Ist R ein Körper, so gilt sogar $\deg(f \cdot g) = \deg f + \deg g$. Hierbei verwenden wir die Konvention $-\infty + a = -\infty$, für $a \in \mathbb{N} \cup \{-\infty\}$.

Definition 2.3.10 Sei R ein kommutativer Ring und $f = \sum_{n \in \mathbb{N}} a_n x^n \in R[x]$ ein Polynom über R.

- (a) Das Polynom f definiert eine Funktion von R nach R, die auch mit f bezeichnet wird: $f(b) := \sum_{n \in \mathbb{N}} a_n b^n$. Hierbei verwenden wir die Konvention $0^0 := 1$.
- (b) Eine Nullstelle von f ist ein Element $b \in R$ mit f(b) = 0.

Bemerkung 2.3.11 *Ist* R *ein kommutativer* Ring, *sind* $f,g \in R[x]$ *und ist* $a \in R$, *so* gilt: (f+g)(a) = f(a) + g(a) *und* $(f \cdot g)(a) = f(a) \cdot g(a)$.

Satz 2.3.12 Ist R ein kommutativer Ring, $f \in R[x]$ und ist $b \in R$ eine Nullstelle von f, so gibt es ein $g \in R[x]$ mit $f = (x - b) \cdot g$.

Korollar 2.3.13 *Ist* K *ein* $K\ddot{o}rper$ *und* $f \in K[x] \setminus \{0\}$, *so* $l\ddot{a}sst$ *sich* f *schreiben in* der Form

$$f = \left(\prod_{i=1}^{n} (x - b_i)\right) \cdot g$$

schreiben, für $b_1, \ldots, b_n \in K$ und wobei $g \in K[x]$ ein Polynom ohne Nullstellen ist. Außerdem hat f maximal $\deg f$ verschiedene Nullstellen.

Bemerkung 2.3.14 Der Fundamentalsatz der Algebra besagt, dass jedes nicht-konstante Polynom $f \in \mathbb{C}[x]$ mindestens eine Nullstelle besitzt, d. h. im Fall $K = \mathbb{C}$ ist das g aus Korollar 2.3.13 in \mathbb{C}^{\times} . Körper mit dieser Eigenschaft nennt man algebraisch abgeschlossen. In der Algebra-Vorlesung werden wir auch sehen: Jeder Körper hat einen algebraisch abgeschlossenen Oberkörper.

Mi 20.11.

3 Vektorräume

3.1 Definition

Im Folgenden sei K ein Körper.

Definition 3.1.1 Ein **Vektorraum** über K (auch: ein K-**Vektorraum**) ist eine abelsche Gruppe (V, +), zusammen mit einer Verknüpfung $: K \times V \to V$, so dass für alle $r, s \in K$ und alle $u, v \in V$ gilt:

- (a) $r \cdot (u + v) = r \cdot u + r \cdot v$
- (b) $(r+s) \cdot v = r \cdot v + s \cdot v$
- (c) $(r \cdot s) \cdot v = r \cdot (s \cdot v)$
- (d) $1 \cdot v = v$

Die Elemente von V nennt man **Vektoren**, die Elemente von K nennt man **Skalare**; + heißt **Vektoraddition**, · heißt **Skalarmultiplikation**. Das neutrale Element $0 \in V$ der Vektoraddition nennt man **Nullvektor**.

In Abschnitt 3.1 habe ich die Vektorraddition, die Skalarmultiplikation und den Nullvektor in rot geschrieben, damit man sie von +, \cdot und 0 in K unterscheiden kann.

Beispiel 3.1.2 Kⁿ ist ein Vektorraum mit der Skalarmultiplikation

$$r \cdot (a_1, \ldots, a_n) := (r \cdot a_1, \ldots, r \cdot a_n).$$

Elemente von K^n werden oft $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$ geschrieben (statt (a_1, \dots, a_n)).

Beispiel 3.1.3 K[x] ist ein Vektorraum über K.

Beispiel 3.1.4 Ist M eine beliebige Menge, so ist Abb(M, K) ein K-Vektorraum, mit punktweiser Vektorraddition und punktweiser Skalarmultiplikation: (f+g)(a) = f(a) + g(a) und $(r \cdot f)(a) = r \cdot (f(a))$ für alle $f, g \in Abb(A, K)$, alle $r \in K$ und alle $a \in M$.

Beispiel 3.1.5 Sei K ein Körper und seien x_1, \ldots, x_n Variablen. Die Menge aller linearen Gleichungen über K in x_1, \ldots, x_n bildet einen K-Vektorraum, mit der Vektoraddition und der Skalarmultiplikation aus Lemma 1.1.7.

Satz 3.1.6 *Ist* V *ein* K-V*ektorraum, so gilt* f $\ddot{u}r$ *alle* $r \in K$ *und alle* $v \in V$:

- (a) $r \cdot v = 0 \iff (r = 0 \lor v = 0)$
- (b) $(-1) \cdot v = -v$.

3.2 Untervektorräume

Sei weiterhin K ein Körper.

Definition 3.2.1 Sei $(V, +, \cdot)$ ein K-Vektorraum. Ist $U \subseteq V$ eine Teilmenge, so dass $(U, +|_{U \times U}, \cdot|_{K \times U})$ auch ein K-Vektorraum ist, so nennt man U einen Untervektorraum von V.

Lemma 3.2.2 Eine Teilmenge U eines K-Vektorraums V ist ein Untervektorraum genau dann, wenn sie nicht leer ist und für alle $u, u' \in U$ und alle $r \in K$ gilt: $ru + u' \in U$.

Mo 25.11.

Definition 3.2.3 Wir nennen ein lineares Gleichungssystem \underline{L} homogen, wenn die rechte Seite jeder Gleichung 0 ist, also wenn die Koeffizientenmatrix die Form

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} & 0 \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} & 0 \end{pmatrix}$$

hat.

Beispiel 3.2.4 Ist \underline{L} ein homogenes lineares Gleichungssystem über K in n Variablen, so ist die Lösungsmenge von \underline{L} ein Untervektorraum von K^n .

Definition 3.2.5 Sei V ein K-Vektorraum.

(a) Eine **Linearkombination** von Vektoren $v_1, \ldots, v_n \in V$ ist ein Vektor der Form

$$\sum_{i=1}^{n} r_i \cdot v_i$$

 $f\ddot{u}r\ r_1, \ldots, r_n \in K$. Man nennt eine solche Linearkombination **nicht**trivial, wenn mindestens eins der r_i nicht 0 ist. Man schreibt

$$\langle v_1, \dots, v_n \rangle_K := \{ \sum_{i=1}^n r_i \cdot v_i \mid r_1, \dots, r_n \in K \}$$

für die Menge aller Linearkombinationen von v_1, \ldots, v_n . Ist allgemeiner $A \subseteq V$ eine beliebige Teilmenge von V, so schreibt man

$$\langle A \rangle_K := \{ \sum_{i=1}^n r_i \cdot v_i \mid n \in \mathbb{N}, r_i \in K, v_i \in A \}.$$

 $\label{eq:continuous} \textit{f\"{u}r die Menge aller Linearkombinationen von (jeweils endlich vielen) Vektoren aus A.}$

Man nennt $\langle v_1, \ldots, v_n \rangle_K$ bzw. $\langle A \rangle_K$ die lineare Hülle (oder den Span oder das Erzeugnis) von v_1, \ldots, v_n bzw. von A.

Das Erzeugnis der leere Mengen definiert man als $\langle \emptyset \rangle_K := \{0\}.$

(b) Gilt $\langle A \rangle_K = V$, so nennt man A ein **Erzeugendensystem** von V; man sagt auch: A erzeugt V.

Satz 3.2.6 Sei V ein K-Vektorraum und $A \subseteq V$ eine beliebige Teilmenge. Dann ist $\langle A \rangle_K$ der kleinste Untervektorraum von V, der A enthält. Mit "kleinste" ist gemeint: Ist $U \subseteq V$ ein beliebiger Untervektorraum, der A enthält, so ist $\langle A \rangle_K \subseteq U$.

Korollar 3.2.7 *Ist* V *ein* K-V*ektorraum,* $A \subseteq V$ *und* $B \subseteq \langle A \rangle_K$, *so ist* $\langle A \cup B \rangle_K = \langle A \rangle_K$.

3.3 Lineare Unabhängigkeit

Sei weiterhin K ein Körper, und sei außerdem V ein K-Vektorraum.

Definition 3.3.1 (a) Eine lineare Abhängigkeit zwischen Vektoren $v_1, \ldots, v_n \in V$ ist eine nicht-triviale Linearkombination

$$\sum_{i=1}^{n} r_i \cdot v_i,$$

die gleich 0 ist. Existiert eine lineare Abhängigkeit zwischen den Vektoren v_1, \ldots, v_n , so nennt man das Tupel (v_1, \ldots, v_n) linear abhängig; sonst nennt man es linear unabhängig. Man sagt auch: "Die Vektoren v_1, \ldots, v_n sind linear (un)abhängig" (und meint damit, dass das Tupel linear (un)abhängig ist).

(b) Eine Teilmenge $A \subseteq V$ heißt **linear abhängig**, wenn endlich viele, paarweise verschiedene Vektoren $v_1, \ldots, v_n \in A$ existieren, die linear abhängig sind.

Lemma 3.3.2 Seien $v_1, \ldots, v_n \in V$. Ist $\sum_{i=1}^n r_i v_i = 0$ eine lineare Abhängigkeit mit $r_n \neq 0$, so ist $\langle v_1, \ldots, v_n \rangle_K = \langle v_1, \ldots, v_{n-1} \rangle_K$.

Mi 27.11.

Satz 3.3.3 Seien $v_1, \ldots, v_{n-1} \in V$ linear unabhängig und sei $v_n \in V \setminus \langle v_1, \ldots, v_{n-1} \rangle_K$. Dann sind auch v_1, \ldots, v_n linear unabhängig.

3.4 Basis und Dimension

Sei weiterhin K ein Körper und V ein K-Vektorraum.

Definition 3.4.1 Sei B entweder eine Teilmenge von V oder ein Tupel von Vektoren aus V. Man nennt B eine **Basis** von V, wenn B linear unabghängig ist und V erzeugt.

Beispiel 3.4.2 In K^n bilden die Vektoren

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

eine Basis von K^n , die **Standardbasis**.

Satz 3.4.3 Seien $v_1, \ldots, v_n \in V$. Dann sind äquivalent:

- (a) (v_1, \ldots, v_n) ist eine Basis von V.
- (b) (v_1, \ldots, v_n) ist ein minimales Erzeugendensystem von V, d. h. $\langle v_1, \ldots, v_n \rangle_K = V$, aber für jedes $i \leq n$ gilt: $\langle v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n \rangle_K \neq V$.
- (c) (v_1, \ldots, v_n) ist ein maximales linear unabhängiges Tupel, d. h. (v_1, \ldots, v_n) ist linear unabhängig, aber für jeden weiteren Vektor $v_{n+1} \in V$ ist das Tupel (v_1, \ldots, v_{n+1}) linear abhängig.
- (d) Jeder Vektor $v \in V$ lässt sich auf eindeutige Weise als Linearkombintation der Vektoren v_i schreiben, d. h. für jedes $v \in V$ existiert genau ein Tupel $(r_1, \ldots, r_n) \in K^n$, so dass $\sum_{i=1}^n r_i v_i = v$ gilt.

Satz 3.4.4 (Basisergänzungssatz) Entweder V besitzt eine Basis v_1, \ldots, v_n , oder es existiert eine unendliche linear unabhängige Menge $\{v_i \mid i \in \mathbb{N}_{\geq 1}\} \subseteq V$. Sind linear unabhängige Vektoren $w_1, \ldots, w_k \in V$ gegeben, so kann (in beiden Fällen) außerdem $v_1 = w_1, \ldots, v_k = w_k$ gewählt werden.

Mo 2.12.

Bemerkung 3.4.5 Es gilt sogar allgemeiner: Jeder Vektorraum besitzt eine Basis. (Ohne Beweis.)

Lemma 3.4.6 Ist $v_1, \ldots, v_n \in V$ ein Erzeugendensystem von V und sind $w_1, \ldots, w_m \in V$ beliebig mit m > n, so sind w_1, \ldots, w_m linear abhängig.

Satz 3.4.7 Sind v_1, \ldots, v_n und w_1, \ldots, w_m zwei Basen eines Vektorraums V, so gilt n = m.

Bemerkung 3.4.8 Man kann definieren, was die Kardinalität einer unendlichen Menge ist. Die präzise Definition ist kompliziert, aber die wichtigste Eigenschaft dieser Definition ist: Zwei (beliebige) Mengen M und M' haben die gleiche Kardinalität genau dann, wenn eine Bijektion $M \to M'$ existiert. (Man nennt eine unendliche Menge abzählbar (unendlich), wenn Sie die gleiche Kardinalität wie \mathbb{N} hat und überabzählbar sonst.)

Mit dieser Definition gilt die folgende Verallgemeinerung von Satz 3.4.7: Sind $B, B' \subseteq V$ zwei Basen eines Vektorraums V, so haben B und B' die gleiche Kardinalität. (Ohne Beweis.)

Definition 3.4.9 Die **Dimension** eines Vektorraums V ist die Kardinalität einer beliebigen Basis von V; Notation dafür: dim V. Man nennt V **endlich** dimensional, wenn dim $V \in \mathbb{N}$ ist und unendlich dimensional sonst.

Satz 3.4.10 Sei V endlich-dimensional und sei $U \subseteq V$ ein Untervektorraum. Dann ist $\dim U \leq \dim V$, und aus $\dim U = \dim V$ folgt U = V.

Bemerkung 3.4.11 Sind $U, U' \subseteq V$ Untervektorräume, so sind auch $U \cap U'$ und

$$U + U' := \{u + u' \mid u \in U, u' \in U'\}$$

Untervektorräume von V. (Man nennt U + U' die **Summe** von U und U').

Satz 3.4.12 Für beliebige Untervektorräume $U, U' \subseteq V$ eines endlich-dimensionalen Vektorraums V gilt:

$$\dim(U+U') = \dim U + \dim U' - \dim(U \cap U').$$

Mi 4.12.

4 Lineare Abbildungen und Matritzen

4.1 Matrizen

Sei weiterhin K ein Körper.

Hier sind einige Ergänzungen zur Definition von Matrizen (1.1.9):

Definition 4.1.1 Seien $m, n \in \mathbb{N}$ und $a_{i,j} \in K$ für $1 \le i \le m$ und $1 \le j \le n$.

(a) Betrachtet man die $m \times n$ -Matrix mit Einträgen $a_{i,j}$, so lässt man in der Notation oft das Komma im Index weg:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

Außerdem schreibt man für für diese Matrix auch $(a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}$ oder $(a_{ij})_{ij}$.

- (b) Man nennt eine Matrix **quadratisch**, wenn sie gleich viele Zeilen wie Spalten hat, also wenn m = n ist.
- (c) Die Menge aller m×n-Matrizen über K wird mit K^{m×n} bezeichnet und auf übliche Weise als K-Vektorraum aufgefasst (d. h. mit komponentenweiser Vektoraddition und Skalarmultiplikation). Die Matrix, deren Einträge alle 0 sind, heißt **Nullmatrix** (und wird wie üblich selbst mit 0 bezeichnet).

Definition 4.1.2 Seien $\ell, m, n \in \mathbb{N}$.

(a) Ist $A = (a_{ij})_{ij} \in K^{\ell \times m}$ und $B = (b_{jk})_{jk} \in K^{m \times n}$, so definieren wir das (Matrix-)Produkt $A \cdot B$ als diejenige Matrix $(c_{ik})_{ik} \in K^{\ell \times n}$, die gegeben ist durch

$$c_{ik} = \sum_{j=1}^{m} a_{ij} b_{jk}.$$

(Statt $A \cdot B$ schreibt man auch AB.)

(b) Wir identifizieren n-Tupel in K^n oft mit der entsprechenden Matrix in $K^{n\times 1}$, die nur aus einer Spalte besteht. Dadurch können wir eine Matrix $A\in K^{m\times n}$ als Abbildung von K^n nach K^m auffassen, die $v\in K^n$ abbildet auf das Matrixprodukt $Av\in K^m$.

Satz 4.1.3 Das Matrixprodukt entspricht der Verknüpfung der entsprechenden Abbildungen: Ist $A \in K^{\ell \times m}$, $B \in K^{m \times n}$ und $v \in K^n$, so gilt (AB)v = A(Bv).

Notation 4.1.4 Sind $v_1, \ldots, v_n \in K^m$, so schreiben wir $(v_1 \mid \cdots \mid v_n)$ für die Matrix, die man erhält, indem man die Vektoren v_1, \ldots, v_n als Spalten nebeneinander schreibt.

Bemerkung 4.1.5 Für eine Matrix $A = (v_1 \mid \cdots \mid v_n) \in K^{m \times n}$ mit Spalten $v_i \in K^m$ gilt:

$$A\begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = \sum_{i=1}^n r_i v_i.$$

Insbesondere gilt für Standard-Basisvektoren $e_i \in K^n$ (siehe Beispiel 3.4.2) $Ae_i = v_i$, und das Bild im A (im Sinne von Definition 1.3.10) ist genau das Erzeugnis $\langle v_1, \ldots, v_n \rangle_K$.

Beispiel 4.1.6 Ist $A = (a_{ij})_{ij} \in K^{m \times n}$ und $\underline{b} = (b_i)_i \in K^m$, so lässt sich das Gleichungssystem mit Koeffizientenmatrix

$$(A | \underline{b}) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

jetzt als eine einzige Gleichung in K^m schreiben, nämlich $A\underline{x} = \underline{b}$, wobei \underline{x} als eine Variable in K^n aufgefasst wird.

Definition 4.1.7 Sei $n \in \mathbb{N}$. Die **Einheitsmatrix** $I_n \in K^{n \times n}$ ist die Matrix, die der Identitätsabbildung $K^n \to K^n$ entspricht:

$$I_n = \left(\begin{array}{ccc} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{array}\right)$$

Mo 9.12.

Lemma 4.1.8 Für Matrizen $A, A' \in K^{k \times \ell}, B, B' \in K^{\ell \times m}$ und $C \in K^{m \times n}$ gilt:

- (a) (AB)C = A(BC)
- (b) $I_k A = A \text{ und } AI_\ell = A$.
- (c) (rA)B = r(AB) und A(rB) = r(AB).
- (d) (A + A')B = AB + A'B' und A(B + B') = AB + AB'

Achtung: Das Analogon von Bemerkung 2.1.4 gilt *nicht* für Matrixmultiplikation, d. h. aus AB = A'B folgt i. A. *nicht* A = A' (für Matrizen A, A', B).

Bemerkung 4.1.9 Insbesondere gilt, für $A \in K^{m \times n}$, $v, v' \in K^n$ und $r \in K$: A(v + v') = Av + Av' und A(rv) = r(Av).

Korollar 4.1.10 $K^{n \times n}$ ist mit der Matrixmultiplikation ein Ring; I_n ist das neutrale Element der Multiplikation.

Notation 4.1.11 Ist $A \in K^{n \times n}$ und $k \in \mathbb{N}$, so setzen wir $A^m := \underbrace{A \cdot A \cdots A}_{k \ mal}$ falls $k \geq 1$ und $A^0 := I_n$.

4.2 Lineare Abbildungen

Sei weiterhin K ein Körper.

Definition 4.2.1 Seien V und W K-Vektorräume. Eine Abbildung $f: V \to W$ heißt **linear** oder (Vektorraum-) Homomorphismus, wenn für alle $v, v' \in V$ und alle $r \in K$ gilt:

$$f(v + v') = f(v) + f(v') \qquad und \qquad f(rv) = rf(v).$$

Die Menge aller Vektorraum-Homomorphismen von V nach W wird mit $\operatorname{Hom}(V,W)$ bezeichnet. (Manchmal schreibt man auch $\operatorname{Hom}_K(V,W)$.)

Beispiel 4.2.2 Jede durch eine Matrix $A \in K^{m \times n}$ gegebene Abbildung von K^n nach K^m ist linear.

Bemerkung 4.2.3 (a) Eine Abbildung $f: V \to W$ ist linear genau dann, wenn für alle $v, v' \in V$ und alle $r \in K$ gilt: f(rv + v') = rf(v) + f(v'). (b) Ist f linear, so gilt automatisch auch f(0) = 0.

Bemerkung 4.2.4 Sind U, V und W K-Vektorräume und $f: U \to V$ und $g: V \to W$ lineare Abbildungen, so ist auch die Verknüpfung $g \circ f: U \to W$ ist eine lineare Abbildung.

Satz 4.2.5 Sind V und W K-Vektorräume, ist v_1, \ldots, v_n eine Basis von V und sind w_1, \ldots, w_n beliebige Vektoren in W, so gibt es genau eine lineare Abbildung $f: V \to W$, die v_i auf w_i abbildet für $1 \le i \le n$.

Korollar 4.2.6 Die linearen Abbildungen von K^n nach K^m sind genau diejenigen Abbildungen, die durch Matrizen $A \in K^{m \times n}$ gegeben sind. Wir haben also eine Bijektion von $K^{m \times n}$ nach $\operatorname{Hom}(K^n, K^m)$ (die einer Matrix die zugehörige Abbildung zuordnet).

Mi 11.12.

Korollar 4.2.7 Seien V und W K-Vektorräume, sei v_1, \ldots, v_n eine Basis von V und sei w_1, \ldots, w_m eine Basis von W. Dann erhalten wir eine Bijektion

$$K^{m \times n} \to \operatorname{Hom}(V, W),$$

die eine Matrix $A := (a_{ij})_{ij}$ abbildet auf die lineare Abbildung $f : V \to W$, die definiert ist durch

$$f(\sum_{j=1}^{n} r_{j}v_{j}) = \sum_{i=1}^{m} s_{i}w_{i} \text{ für } \begin{pmatrix} r_{1} \\ \vdots \\ r_{n} \end{pmatrix} \in K^{n} \text{ beliebig und } \begin{pmatrix} s_{1} \\ \vdots \\ s_{m} \end{pmatrix} = A \begin{pmatrix} r_{1} \\ \vdots \\ r_{n} \end{pmatrix}.$$

Definition 4.2.8 Die Matrix A aus Korollar 4.2.7 nennt man die **Matrix von** f bezüglich der Basen $(v_j)_j$ und $(w_i)_i$.

Korollar 4.2.9 Sind V und W K-Vektorräume und $U \subseteq V$ ein Untervektorraum, so lässt sich jede lineare Abbildung $U \to W$ zu einer linearen Abbildung $V \to W$ fortsetzen.

Definition 4.2.10 Der Kern einer linearen Abbildung $f \in \text{Hom}(V, W)$ ist

$$\ker f := \{ v \in V \mid f(v) = 0 \}.$$

Satz 4.2.11 Seien V und W K-Vektorräume und $f: V \to W$ eine lineare Abbildung. Dann gilt:

- (a) Das Bild im f ist ein Untervektorraum von W (vgl. Definition 1.3.10).
- (b) $Der Kern \ker f$ ist ein Untervektorraum von V.
- (c) Für $v, v' \in V$ gilt: $f(v) = f(v') \iff v v' \in \ker f$. Insbesondere ist f injektiv genau dann, wenn $\ker f = \{0\}$ ist.

Definition 4.2.12 Seien V und W K-Vektorräume.

- (a) Eine bijektive lineare Abbildung $f \in \text{Hom}(V, W)$ nennt man einen (Vektorraum-) Isomorphismus. Um auszudrücken, dass eine Abbildung $f \colon V \to W$ ein Isomorphismus ist, schreiben wir auch $f \colon V \overset{\sim}{\to} W$.
- (b) Man sagt, ein K-Vektorraum ist V ist **isomorph** zu einem K-Vektorraum W, wenn ein Isomorphismus $f \colon V \to W$ existiert. Statt "V ist isomorph zu W" sagt man auch "V und W sind isomorph (zueinander)". Notation dafür: $V \cong W$.

Beispiel 4.2.13 Ist V ein K-Vektorraum und v_1, \ldots, v_n eine Basis von V, so ist

$$K^n \to V, \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} \mapsto \sum_{i=1}^n r_i v_i$$

ein Isomorphismus von Vektorräumen.

Satz 4.2.14 Seien V und W K-Vektorräume und sei $f: V \to W$ ein Isomorphismus. Dann ist die inverse Abbildung $f^{-1}: W \to V$ auch ein Isomorphismus.

Bemerkung 4.2.15 Ist $f \in \text{Hom}(V, W)$ ein Isomorphismus von Vektorräumen, so lassen sich mit f "Eigenschaften zwischen V und W übertragen", z. B. gilt:

- (a) Seien $v_1, \ldots, v_n \in V$ und $w_1 := f(v_1), \ldots, w_n := f(v_n)$. Dann sind v_1, \ldots, v_n linear unabhängig / ein Erzeugendensystem von V / eine Basis von V genau dann, wenn w_1, \ldots, w_n linear unabhängig / ein Erzeugendensystem von W / eine Basis von W sind.
- (b) $\dim V = \dim W$.
- (c) Für $U_V \subseteq V$ und $U_W := f(U_V) \subseteq W$ gilt: U_V ist ein Untervektorraum von V genau dann, wenn U_W ein Untervektorraum von W ist.

Mo 16.12.

Bemerkung 4.2.16 Seien V und W K-Vektorräume, sei v_1, \ldots, v_n eine Basis von V, sei w_1, \ldots, w_m eine Basis von W, und sei $f: V \to W$ eine lineare

Abbildung. Die Matrix von f bezüglich der Basen $(v_i)_i$ und $(w_j)_j$ (aus Korollar 4.2.7) ist gerade die Matrix der Verknüpfung $g_W^{-1} \circ f \circ g_V \colon K^n \to K^m$, wobei $g_V \colon K^n \to V$ und $g_W \colon K^m \to W$ die Isomorphismen aus Beispiel 4.2.13 sind (angewandt auf die Basis $(v_i)_i$ von V und die Basis $(w_j)_j$ von W).

Definition 4.2.17 Eine Matrix $A \in K^{n \times n}$ heißt **invertierbar**, wenn die durch A definierte Abbildung $K^n \to K^n$ ein Isomorphismus ist. Die Matrix, die die inverse Abbildung definiert, heißt zu A **inverse Matrix**; Notation dafür: A^{-1} .

Bemerkung 4.2.18 Eine Matrix $A \in K^{n \times n}$ ist also invertierbar genau dann, wenn eine Matrix $B \in K^{n \times n}$ existiert mit $AB = BA = I_n$. Ist dies der Fall, so ist $A^{-1} = B$.

Satz 4.2.19 Sind v_1, \ldots, v_n und v'_1, \ldots, v'_n zwei Basen des selben K-Vektorraums V, so existiert eine invertierbare Matrix $A \in K^{n \times n}$ mit der folgenden Eigenschaft: Ist $v \in V$ beliebig, und schreiben wir v als Linearkombintationen

$$v = \sum_{i=1}^{n} r_i v_i = \sum_{i=1}^{n} r'_i v'_i$$

(für $r_i, r'_i \in K$), so gilt

$$A \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix} = \begin{pmatrix} r'_1 \\ \vdots \\ r'_n \end{pmatrix}.$$

(Man nennt A die **Basiswechselmatrix** zwischen den Basen $(v_i)_i$ und $(v'_i)_i$.)

4.3 Homomorphiesatz und Rang

Sei weiterhin K ein Körper.

Satz 4.3.1 Sei V ein K-Vektorraum und $U \subseteq V$ ein Untervektorraum. Dann wird die Quotientengruppe V/U aus Satz 2.2.7 mit der folgenden Skalarmultiplikation zu einem K-Vektorraum:

$$r \cdot \bar{v} := \overline{rv}.$$

(Man nennt V/U einen Quotientenvektorraum oder Faktorvektorraum.)

Bemerkung 4.3.2 Die kanonische Abbildung $V \to V/U, v \mapsto \bar{v}$ (vgl. Definition 1.4.7) ist linear.

Satz 4.3.3 Ist V ein endlich-dimensionaler Vektorraum und $U \subseteq V$ ein Untervektorraum, so gilt $\dim V = \dim U + \dim(V/U)$.

Mi 18.12.

Satz 4.3.4 Seien V und W K-Vektorräume, sei $f \in \text{Hom}(V,W)$, sei $U \subseteq V$ ein Untervektorraum, und sei can: $V \to V/U$ die kanonische Abbildung. Es existiert genau dann ein $g \in \text{Hom}(V/U,W)$ mit $f = g \circ \text{can}$, wenn $U \subseteq \ker f$ ist.

Satz 4.3.5 (Homomorphiesatz) Sind V und W K-Vektorräume und ist $f \in \text{Hom}(V,W)$, so erhält man einen Isomorphismus

$$\tilde{f}: V/(\ker f) \to \operatorname{im} f, \bar{v} \mapsto f(v).$$

Definition 4.3.6 (a) Seien V und W endlich-dimensionale Vektorräume. Der Rang einer linearen Abbildung $f \in \text{Hom}(V, W)$ ist

$$\operatorname{rk} f := \dim(\operatorname{im}(f)) = \dim(V/\ker(f)) = \dim V - \dim\ker(f).$$

(b) Der **Rang** rk A einer Matrix $A \in K^{m \times n}$ ist der Rang der zugehörigen Abbildung $K^n \to K^m$.

Bemerkung 4.3.7 Sind V und W zwei endich-dimensionale K-Vektorräume und ist $f \in \text{Hom}(V, W)$, so gilt:

- (a) Die Abbildung f ist injektiv genau dann, wenn $\operatorname{rk} f = \dim V$; ist f nicht injektiv, so ist $\operatorname{rk} f < \dim V$.
- (b) Die Abbildung f ist surjektiv genau dann, wenn $\operatorname{rk} f = \dim W$; ist f nicht surjektiv, so ist $\operatorname{rk} f < \dim W$.

Satz 4.3.8 (Sylvesters Rang-Ungleichung) Sind U, V und W endlich-dimensionale K-Vektorräume und $U \xrightarrow{f} V \xrightarrow{g} W$ lineare Abbildungen, so gilt

$$\operatorname{rk}(f) + \operatorname{rk}(g) - \dim V \le \operatorname{rk}(g \circ f) \le \min\{\operatorname{rk} g, \operatorname{rk} f\}.$$

Insbesondere: Ist f surjektiv, so ist $\operatorname{rk}(g \circ f) = \operatorname{rk} g$; und: Ist g injektiv, so ist $\operatorname{rk}(g \circ f) = \operatorname{rk} f$.

Mo 6.1.

Bemerkung 4.3.9 Die Menge der invertierbaren $n \times n$ -Matrizen über K bildet eine Gruppe, mit der Matrix-Multiplikation als Verknüpfung und I_n als neutralem Element. Diese Gruppe wird mit $\mathrm{GL}_n(K)$ bezeichnet.⁵

Korollar 4.3.10 Sind $A, B \in K^{n \times n}$ Matrizen mit $AB = I_n$, so sind beide Matrizen invertierbar, und invers zueinander $(d.h. \text{ es gilt } A^{-1} = B)$.

4.4 Anwendung auf lineare Gleichungssysteme

Sei weiterhin K ein Körper.

Satz 4.4.1 Für jede Matrix $A = (a_{ij})_{ij} \in K^{m \times n}$ sind die folgenden Zahlen gleich:

- (a) der Rang von A;
- (b) der Spaltenrang von A, d. h. die Dimension des Erzeugnisses

$$\left\langle \begin{pmatrix} a_{1,1} \\ \vdots \\ a_{m,1} \end{pmatrix}, \dots, \begin{pmatrix} a_{1,n} \\ \vdots \\ a_{m,n} \end{pmatrix} \right\rangle_K$$

der Spalten von A;

 $^{^5\}mathrm{Auf}$ englisch heißt sie "general linear group"; daher "GL"

(c) der **Zeilenrang** von A, d. h. die Dimension des Erzeugnisses

$$\langle (a_{1,1},\ldots,a_{1,n}),\ldots,(a_{m,1},\ldots,a_{m,n})\rangle_K$$

der Zeilen von A.

Inbesondere ist die Dimension des Lösungsraums von $A\underline{x} = 0$ gleich n (Anzahl der Variablen) minus der maximalen Anzahl linear unabhängiger Zeilen von A.

Bemerkung 4.4.2 Jede Zeile eines Matrix-Produkts BA (für $A \in K^{m \times n}$, $B \in$ $K^{\ell \times m}$) ist eine Linearkombination der Zeilen von A: Sind $z_1, \ldots, z_m \in K^{1 \times n}$ die Zeilen von A und ist $(b_{i,1}, \ldots, b_{i,m})$ die i-te Zeile von B, so ist die i-te Zeile von BA gleich

$$b_{i,1}z_1+\cdots+b_{i,m}z_m$$
.

Insbesondere: Ist A eine Matrix und erhält man A' aus A durch eine elementare Zeilentransformation (siehe Definition 1.1.10), so gilt A' = EA für eine Matrix $E \in K^{m \times m}$.

Definition 4.4.3 Die Matrizen E aus Bemerkung 4.4.2, die elementaren Transformationen entsprechen, nennt man **Elementarmatrizen**. Die Elementarmatrizen sind also die Matrizen $E = (e_{ij})_{ij}$ mit:

- (TAU) Zeilen k und ℓ vertauschen (für $1 \leq k, \ell \leq m, k \neq \ell$): $e_{ii} = 1$ falls $i \notin \{k,\ell\}$; $e_{k\ell} = e_{\ell k} = 1$; alle anderen e_{ij} sind 0;
- (MUL) Zeile k mit $r \in K^{\times}$ multiplizieren (1 $\leq k \leq m$): $e_{ii} = 1$ falls $i \neq k$; $e_{kk} = r$; alle anderen e_{ij} sind 0;
- (ADD) das r-fache von Zeile k zu Zeile ℓ addieren (für $r \in K$ und $1 \le k, \ell \le m$, $k \neq \ell$): $e_{ii} = 1$; $e_{\ell k} = r$; alle anderen e_{ij} sind 0.

Satz 4.4.4 Elementarmatrizen sind invertierbar, und das Inverse einer Elementarmatrix ist auch eine Elementarmatrix.

Definition 4.4.5 Die Transponierte einer Matrix $A = (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n} \in$ $K^{m \times n}$ ist die Matrix $A^T := (a_{ji})_{1 \le j \le n, 1 \le i \le m} \in K^{n \times m}$.

Bemerkung 4.4.6 (a) Für $A \in K^{m \times n}$ gilt: $(A^T)^T = A$ (b) Für $A, B \in K^{m \times n}$ gilt: $(A + B)^T = A^T + B^T$

- (c) Für $A \in K^{\ell \times m}$ und $B \in K^{m \times n'}$ gilt: $(AB)^T = B^T A^T$.
- (d) Eine Matrix $A \in K^{n \times n}$ ist invertierbar genau dann, wenn A^T invertierbar ist, und ist dies der Fall, so gilt $(A^T)^{-1} = (A^{-1})^T$.
- (e) Ist $E \in K^{n \times n}$ eine Elementarmatrix, so ist auch E^T eine Elementarma-

Bemerkung 4.4.7 Ist $A \in K^{m \times n}$ beliebig und $E \in K^{n \times n}$ eine Elementarmatrix, so erhält man AE aus A durch eine elementare Spaltentransformation, d.h. Tauschen von Spalten bzw. Multiplikation einer Spalte mit $r \in K^{\times}$ bzw. Addition des r-fachen einer Spalte zu einer anderen Spalte.

Mi 8.1.

Bemerkung 4.4.8 *Ist* $A \in K^{n \times n}$ *eine quadratische Matrix in Normalform mit* $\operatorname{rk} A = n$, so ist bereits $A = I_n$.

Satz 4.4.9 Ist $A \in K^{n \times n}$, und wendet man auf die (erweiterte) Matrix $(A \mid I_n)$ Zeilentransformationen so an, dass beim Ergebnis $(A' \mid B')$ die Matrix A' in Normalform ist, so gilt: A ist invertierbar genau dann wenn $A' = I_n$; insbesondere lässt sich jede invertierbare Matrix als Produkt von Elementarmatrizen schreiben. Außerdem ist dann $B' = A^{-1}$.

5 Endomorphismen

Im ganzen Kapitel sei weiterhin K ein Körper.

5.1 Determinanten

Definition 5.1.1 Seien V_1, \ldots, V_n und W K-Vektorräume. Eine Abbildung $f: V_1 \times \cdots \times V_n \to W$ heißt **multilinear**, wenn für alle $v_1 \in V_1, \ldots, v_n \in V_n$ und alle $1 \leq i \leq n$ die Abbildung

$$V_i \to W, v' \mapsto f(v_1, \dots, v_{i-1}, v', v_{i+1}, \dots, v_n)$$

linear ist. Im Fall n = 2 nennt man f auch **bilinear**.

Satz 5.1.2 Es existiert genau eine Abbildung $f: K^{n \times n} \to K$ mit den folgenden Eigenschaften:

(a) Die Abbildung

$$K^n \times \cdots \times K^n \to K, (v_1, \dots, v_n) \mapsto f((v_1 \mid \dots \mid v_n))$$

 $ist\ multilinear.$

- (b) f ist **alternierend**, d. h. falls $A \in K^{n \times n}$ zwei gleiche Spalten hat, so ist f(A) = 0.
- (c) f ist **normiert**, d.h. $f(I_n) = 1$.

Definition 5.1.3 Die Abbildung f aus Satz 5.1.2 wird mit det bezeichnet. Ist $A \in K^{n \times n}$, so nennt man det A die **Determinante** von A.

Beispiel 5.1.4 Im Fall n = 2 erfüllt

$$\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

die Eigenschaften aus Satz 5.1.2.

Mo 13.1.

Lemma 5.1.5 Im Folgenden sei $A \in K^{n \times n}$ beliebig und $E \in K^{n \times n}$ eine Elementarmatrix. Wir nehmen an, dass det: $K^{n \times n} \to K$ eine Abbildung mit den Eigenschaften aus Satz 5.1.2 ist. Dann gilt:

(a)
$$det(AE) = det A \cdot det E$$

$$\det E = \begin{cases} -1 & \textit{falls E zwei Spalten tauscht} \\ r & \textit{falls E eine Spalte mit } r \in K^{\times} \textit{ multipliziert} \\ 1 & \textit{falls E das r-fache einer Spalte zu einer} \\ & \textit{anderen Spalte addiert } (r \in K) \end{cases}$$

(c) Enthält A eine Spalte, die nur aus 0en besteht, so ist $\det A = 0$.

Bemerkung 5.1.6 Aus dem Lemma ergibt sich eine Möglichkeit, det A zu berechnen:

- (a) Forme A durch Spaltentransformationen zu einer Matrix $A' = AE_1 \cdots E_k$ in transponierter Normalform um (für Elementarmatrizen E_i). Es folgt: $\det A' = \det A \cdot \det E_1 \cdots \det E_k$.
- (b) Wenn A' eine Nullspalte enthält, ist $\det A = \det A' = 0$. Wenn A' keine Nullspalten enthält, ist $A' = I_n$, und es folgt $\det A = (\det E_1 \cdots \det E_k)^{-1}$. Außerdem gibt Lemma 5.1.5 (b) an, was $\det E_i$ ist.

Korollar 5.1.7 Sei det: $K^{n \times n} \to K$ eine Abbildung mit den Eigenschaften aus Satz 5.1.2. Dann gilt für beliebige Matrizen $A, B \in K^{n \times n}$:

- (a) A ist invertierbar genau dann, wenn $\det A \neq 0$ ist. Ist dies der Fall, so gilt $\det(A^{-1}) = (\det A)^{-1}$.
- (b) $\det AB = \det A \cdot \det B$.
- (c) det $A = \det A^T$. Insbesondere gelten die Eigenschaften aus Satz 5.1.2 und Lemma 5.1.5 auch für Zeilen statt Spalten, und Determinanten können auch mit Zeilentransformationen berechnet werden.

Mi 15.1.

Satz 5.1.8 (Laplacescher Entwicklungssatz) $Sei \ n \geq 2 \ und \ sei \ A = (a_{ij})_{1 \leq i,j \leq n} \in K^{n \times n}$. Wir schreiben $A_{(k,\ell)}$ für die $(n-1) \times (n-1)$ -Matrix, die man aus A erhält, indem man die k-te Zeile und die ℓ -te Spalte rausstreicht. Dann gilt für jedes $k \leq n$:

$$\det A = \sum_{\ell=1}^{n} (-1)^{k+\ell} \cdot a_{k,\ell} \cdot \det A_{(k,\ell)}.$$

(Man nennt diese Art, det A zu berechnen, die "**Entwicklung** nach der k-ten Zeile".)

Beispiel 5.1.9 Für Matrizen der Form

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix}$$

gilt: $\det A = a_{11}a_{22}\cdots a_{nn}$. (Matritzen dieser Form nennt man **obere Drei**ecksmatrizen.) **Bemerkung 5.1.10** Da det $A = \det A^T$, gilt auch die analoge Formel mit Zeilen statt Spalten, d. h. für jedes $\ell \leq n$ gilt:

$$\det A = \sum_{k=1}^{n} (-1)^{k+\ell} \cdot a_{k,\ell} \cdot \det A_{(k,\ell)}.$$

(Man nennt dies die "**Entwicklung** nach der ℓ-ten Spalte".)

Korollar 5.1.11 (Regel von Sarrus) Die Determinante einer 3×3 -Matrix lässt sich wie folgt berechnen:

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

Bemerkung 5.1.12 (Leibniz-Formel) Im Allgmeinen lässt sich die Determinante einer $n \times n$ -Matrix $A = (a_{ij})_{ij}$ ausdrücken als eine Summe von Produkten der Form $\pm a_{i_1,j_1} \cdots a_{i_n,j_n}$, wobei es je einen Summenden gibt für jede Möglichkeit, aus jeder Zeile und jeder Spalte genau einen Matrix-Koeffizienten auszuwählen. Genauer:

$$\det A = \sum_{\sigma \in \text{Sym}(\{1,\dots,n\})} \text{sgn}(\sigma) \cdot a_{1,\sigma(1)} \cdot a_{2,\sigma(2)} \cdots a_{n,\sigma(n)},$$

wobei $\operatorname{Sym}(\{1,\ldots,n\})$ die Menge der Bijektionen $\{1,\ldots,n\} \to \{1,\ldots,n\}$ ist (siehe Beispiel 2.1.3), und wobei das **Signum** $\operatorname{sgn}(\sigma)$ von σ wie folgt definiert ist: Wir betrachten die Matrix $B_{\sigma} = (b_{ij})_{ij}$ mit $b_{i,\sigma(i)} = 1$ und allen anderen Koeffizienten 0 und setzen $\operatorname{sgn}(\sigma) := \det(B_{\sigma}) \in \{1,-1\}$.

Definition 5.1.13 Sei V ein K-Vektorraum.

- (a) Eine lineare Abbildung von V in sich selbst nennt man auch einen **Endo-morphismus** von V. Die Menge aller Endomorphismen von V wird mit End(V) bezeichnet.
- (b) Ein **Automorphismus** ist ein bijektiver Endomorphismus. Die Menge aller Automorphismen von V bildet eine Gruppe (mit der Verkettung von Abbildungen als Verknüpfung); diese wird mit Aut(V) (oder manchmal auch mit GL(V)) bezeichnet.

Mo 20.1.

Definition 5.1.14 Sei V ein endlich-dimensionaler K-Vektorraum und $f \in \operatorname{End}(V)$ ein Endomorphismus. Die **Determinante** von f wird wie folgt definiert. Sei $g \colon K^n \to V$ ein beliebiger Isomorphismus und sei $A \in K^{n \times n}$ die Matrix zur Abbildung $g^{-1} \circ f \circ g$. Dann definiert man $\det f := \det A$.

Lemma 5.1.15 In Definition 5.1.14 hängt die Determinante det A nicht von der Wahl von g ab.

5.2 Eigenwerte und Eigenvektoren

Definition 5.2.1 Sei V ein K-Vektorraum und sei $f \in \text{End}(V)$ ein Endomorphismus. Ein Skalar $\lambda \in K$ heißt **Eigenwert** von f, wenn es einen Vektor $v \in V \setminus \{0\}$ gibt mit $f(v) = \lambda v$. In diesem Fall nennt man v einen **Eigenvektor** von f zum Eigenwert λ .

Definition 5.2.2 Sei $A \in K^{n \times n}$ und x eine Variable. Nach Bemerkung 5.1.12 ist die Determinante $\chi_A(x) := \det(xI_n - A)$ ein Polynom in x. Dieses Polynom nennt man das **charakteristische Polynom**⁶ der Matrix A.

Bemerkung 5.2.3 Das charakteristische Polynom $\chi_A(x)$ einer Matrix $A \in K^{n \times n}$ hat die Form

$$\chi_A(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + x^n,$$

wobei $a_0 = (-1)^n \cdot \det A$ ist. (Ein Polynom, bei dem – wie hier – die höchste x-Potenz mit dem Faktor 1 vorkommt, nennt man **normiert**.)

Satz 5.2.4 Sei $A \in K^{n \times n}$. Die Nullstellen von χ_A sind genau die Eigenwerte von A. Ist $\lambda \in K$ eine solche Nullstelle, so sind die Eigenvektoren von A zum Eigenwert λ genau die Elemente von $\ker(\lambda I_n - A) \setminus \{0\}$.

Definition 5.2.5 Analog zu Definition 5.1.14 kann man das **charakteristi**sche **Polynom** auch für Endomorphismen f von endlich-dimensionalen Vektorräumen V definieren: Ist $g: K^n \to V$ ein Isomorphismus und $A \in K^{n \times n}$ die Matrix zur Abbildung $g^{-1} \circ f \circ g$, so definiert man $\chi_f := \chi_A$.

Mi 22.1.

Definition 5.2.6 (a) Eine Matrix der Form

$$\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix} \in K^{n \times n}$$

für $\lambda_1, \ldots, \lambda_n \in K$ heißt **Diagonalmatrix** ("mit **Diagonaleinträgen** $\lambda_1, \ldots, \lambda_n$ ").

- (b) Ein Endomorphismus $f \in \text{End}(V)$ heißt diagonalisierbar, wenn ein Isomorphismus $g \colon K^n \to V$ existiert, so dass $g^{-1} \circ f \circ g$ durch eine Diagonalmatrix gegeben ist.
- (c) Eine Matrix $A \in K^{n \times n}$ heißt diagonalisierbar, wenn der entsprechende Endomorphismus diagonalisierbar ist, d. h. wenn eine invertierbare Matrix $S \in GL_n(K)$ existiert, so dass $S^{-1}AS$ eine Diagonalmatrix ist.

Bemerkung 5.2.7 Sei V ein endlich-dimensionaler K-Vektorraum. Ein Endomorphismus $f \in \operatorname{End}(V)$ ist diagonalisierbar genau dann, wenn eine Basis von V aus Eigenvektoren von f existiert. Genauer:

⁶Manche Autoren verwenden ein anderes Vorzeichen in der Definition des charakteristischen Polynoms: $\chi_A(x) := \det(A - xI_n)$.

- (a) Ist $g: K^n \to V$ ein Isomorphismus, so dass $g^{-1} \circ f \circ g$ durch eine Diagonalmatrix mit Diagonaeinträgen $\lambda_1, \ldots, \lambda_n$ gegeben ist, so ist $g(e_1), \ldots, g(e_n)$ eine Basis von V, und $g(e_i)$ ist ein Eigenvektor zum Eigenwert λ_i . (Hierbei ist e_1, \ldots, e_n die Standardbasis von K^n .)
- (b) Ist umgekehrt v_1, \ldots, v_n eine Basis von V so, dass v_i ein Eigenvektor zum Eigenwert λ_i ist, so wählen wir den Isomorphismus $g \colon K^n \to V$ so, dass $g(e_i) = v_i$ ist. Dann ist $g^{-1} \circ f \circ g$ gegeben durch die Diagonalmatrix mit Diagonaleinträgen $\lambda_1, \ldots, \lambda_n$.
- (c) Im Fall $V = K^n$ ist g durch eine Matrix $S \in GL_n(K)$ gegeben, und die obigen $g(e_i)$ sind die Spalten von S.

6 Euklidische und unitäre Vektorräume

In diesem ganzen Kapitel sei \mathbb{K} entweder \mathbb{R} oder \mathbb{C} .

6.1 Skalarprodukte

Definition 6.1.1 Sei V ein endlich-dimensionaler \mathbb{K} -Vektorraum. Ein **Skalarprodukt** auf V ist eine Abbildung $V \times V \to \mathbb{K}$, $(v, w) \mapsto \langle v, w \rangle$, so dass für alle $v, v', w, w' \in V$ und alle $r \in \mathbb{K}$ folgendes gilt:

- (a) $\langle rv + v', w \rangle = r \langle v, w \rangle + \langle v', w \rangle$ und $\langle v, rw + w' \rangle = \bar{r} \langle v, w \rangle + \langle v, w' \rangle$ (Sesquilinearität im Fall $\mathbb{K} = \mathbb{R}$).
- (b) $\langle v, w \rangle = \overline{\langle w, v \rangle}$ (Hermitezität im Fall $\mathbb{K} = \mathbb{C}$; Symmetrie im Fall $\mathbb{K} = \mathbb{R}$)
- (c) Ist $v \neq 0$, so ist $\langle v, v \rangle$ eine reelle Zahl größer als 0 (**positive Definitheit**).

Vorsicht: Die Notation $\langle v, w \rangle$ für das Skalarprodukt sieht (dummerweise) fast genauso aus wie die Notation $\langle v, w \rangle_{\mathbb{K}}$ für das Erzeugnis von v und w (Definition 3.2.5).

Definition 6.1.2 Ein **euklidischer Vektorraum** ist ein \mathbb{R} -Vektorraum zusammen mit einem Skalarprodukt; ein **unitärer Vektorraum** ist ein \mathbb{C} -Vektorraum zusammen mit einem Skalarprodukt.

Definition 6.1.3 Sei V ein euklidischer oder unitärer Vektorraum. Die **Norm** eines Vektors $v \in V$ definiert durch $||v|| := \sqrt{\langle v, v \rangle} \in \mathbb{R}_{\geq 0}$. (Hierbei ist $\mathbb{R}_{\geq 0}$ eine Kurzschreibweise für $\{r \in \mathbb{R} \mid r \geq 0\}$.)

Beispiel 6.1.4 Wir fassen \mathbb{R}^n als euklidischen Vektorraum und \mathbb{C}^n als unitären Vektorraum auf, indem wir das folgende **Standard-Skalarprodukt** verwenden:

$$\left\langle \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}, \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \right\rangle := a_1 \bar{b}_1 + \dots + a_n \bar{b}_n.$$

Die Norm eines Vektors ist dann

$$\| \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \| = \sqrt{|a_1|^2 + \dots + |a_n|^2}.$$

Mo 27.1.

Satz 6.1.5 Sei V ein euklidischer bzw. unitärer \mathbb{K} -Vektorraum, seien $v, w \in V$ und sei $r \in \mathbb{K}$. Dann gilt:

- (a) $||v|| = 0 \iff v = 0$
- (b) $||rv|| = |r| \cdot ||v||$
- (c) $|\langle v, w \rangle| \leq ||v|| \cdot ||w||$ (Cauchy-Schwarz-Ungleichung), und Gleichheit gilt genau dann, wenn v und w linear abhängig sind.
- (d) $||v+w|| \le ||v|| + ||w||$ (Dreiecksungleichung)

Definition 6.1.6 Sei $A \in \mathbb{K}^{n \times n}$.

- (a) Wir schreiben Ā für die Matrix, die man aus A erhält, indem man alle Einträge komplex konjugiert.
- (b) Gilt $A^T = A$, so nennt man A symmetrisch. Gilt $A^T = \bar{A}$, so nennt man A hermitesch.
- (c) Eine hermitesche Matrix heißt **positiv definit**, wenn für alle $v \in \mathbb{K}^n \setminus \{0\}$ gilt: $v^T A \bar{v}$ ist eine reelle Zahl größer als 0.

Satz 6.1.7 (a) Zu jedem Skalarprodukt $\langle \cdot, \cdot \rangle$ auf \mathbb{K}^n existiert genau eine Matrix $A \in \mathbb{K}^{n \times n}$, so dass

$$\langle v, w \rangle = v^T A \bar{w}$$

gilt.

(b) Eine Matrix $A \in \mathbb{K}^{n \times n}$ entspricht auf die obige Art einem Skalarprodukt genau dann, wenn sie hermitesch und positiv definit ist.

Mi 29.1.

6.2 Isometrien und Orthonormalbasen

In diesem gesamten Aschnitt sei V ein endlich-dimensionaler euklidischer oder unitärer \mathbb{K} -Vektorraum. Auf \mathbb{K}^n verwenden wir immer das Standard-Skalarprodukt.

- **Definition 6.2.1** (a) Seien V und W endlich-dimensionale euklidische oder unitäre Vektorräume. Ein Isomorphismus $f \in \text{Hom}(V, W)$ heißt **Isometrie**, wenn für alle $v, v' \in V$ gilt: $\langle v, v' \rangle = \langle f(v), f(v') \rangle$.
 - (b) Ist W = V, so nennt man f auch eine **orthogonale Transformation** (falls $\mathbb{K} = \mathbb{R}$) bzw. eine **unitäre Transformation** (falls $\mathbb{K} = \mathbb{C}$).
 - (c) Man nennt eine Matrix $A \in \mathbb{K}^{n \times n}$ orthogonal bzw. unitär, wenn der entsprechende Endomorphismus von \mathbb{K}^n (mit dem Standard-Skalarprodukt) eine orthogonale bzw. unitäre Transformation ist.

Bemerkung 6.2.2 Die orthogonalen bzw. unitären Matrizen bilden eine Untergruppe von $GL_n(\mathbb{K})$.

Definition 6.2.3 (a) Ein Vektor $v \in V$ heißt normiert⁷, wenn ||v|| = 1.

(b) Zwei Vektoren $v, w \in V$ heißen **orthogonal** zueinander, wenn $\langle v, w \rangle = 0$ ist. Man schreibt $v \perp w$.

Definition 6.2.4 Eine **Orthonormalbasis** von V ist eine Basis v_1, \ldots, v_n mit folgenden Eigenschaften:

- (a) v_i ist normiert für alle i.
- (b) $v_i \perp v_j$ für alle i, j mit $i \neq j$.

Beispiel 6.2.5 Die Standardbasis von \mathbb{K}^n ist eine Orthonormalbasis.

Bemerkung 6.2.6 Ist v_1, \ldots, v_n eine Orthonormalbasis von V, so gilt für beliebige Vektoren $v = \sum_i a_i v_i$ und $w = \sum_i b_i v_i$ (mit $a_i, b_i \in \mathbb{K}$): $\langle v, w \rangle = \sum_i a_i \bar{b}_i$.

Satz 6.2.7 Sei v_1, \ldots, v_n eine Orthonormalbasis von V und sei $v \in V$. Dann gilt $v = \sum_{i=1}^{n} \langle v, v_i \rangle v_i$.

Satz 6.2.8 Für eine Matrix $A \in \mathbb{K}^{n \times n}$ sind äquivalent:

- (a) A ist orthogonal bzw. unitär.
- (b) A ist invertierbar und es gilt $A^T = \bar{A}^{-1}$.
- (c) Die Spalten von A bilden eine Orthonormalbasis.

Bemerkung 6.2.9 Sine $v_1, \ldots, v_k \in V \setminus \{0\}$ paarweise orthogonal zueinander $(d. h. v_i \perp v_j \text{ für alle } i \neq j)$, so sind sie bereits linear unabhängig.

Satz 6.2.10 (Gram-Schmidt-Orthogonalisierung) V besitzt eine Orthonormalbasis. Sind bereits $v_1, \ldots, v_k \in V$ gegeben, die normiert und paarweise orthogonal zueinander sind, so lassen sich v_1, \ldots, v_k zu einer Orthonormalbasis von V ergänzen.

Korollar 6.2.11 Ist V ein n-dimensionaler euklidischer oder unitärer Vektorraum, so existiert eine Isometrie $g \colon \mathbb{K}^n \to V$ (wobei \mathbb{K}^n mit dem Standard-Skalarprodukt versehen ist).

⁷Nicht verwechseln mit einem "normierten Polynom".

Lineare Algebra II

Mo 7.4.

6.3 Orthogonale Komplemente

Sei weiterhin $\mathbb K$ entweder $\mathbb R$ oder $\mathbb C,$ und V sei ein euklidischer bzw. unitärer $\mathbb K$ -Vektorraum.

Definition 6.3.1 Das orthogonale Komplement eines Untervektorraums $U \subseteq V$ ist

$$U^{\perp} := \{ v \in V \mid \forall u \in U : v \perp u \}.$$

Für Vektoren $u \in V$ schreibt man auch $u^{\perp} := \langle u \rangle_{\mathbb{K}}^{\perp} = \{ v \in V \mid v \perp u \}.$

Bemerkung 6.3.2 Sei u_1, \ldots, u_m ein Erzeugendensystem von U und sei $v \in V$. Dann ist $v \in U^{\perp}$ genau dann, wenn $v \perp u_1, \ldots, v \perp u_m$.

Satz 6.3.3 Sei $U \subseteq V$ ein Untervektorraum. Dann gilt:

- (a) U^{\perp} ist auch ein Untervektorraum von V, und es gilt $U \cap U^{\perp} = \{0\}$.
- (b) $U \subset (U^{\perp})^{\perp}$.

Ist V endlich-dimensional, so gilt außerdem:

- (c) Ist u_1, \ldots, u_m eine Orthonormalbasis von U und w_1, \ldots, w_n eine Orthonormalbasis von U^{\perp} , so ist $u_1, \ldots, u_m, w_1, \ldots, w_n$ eine Orthonormalbasis von V. Insbesondere gilt dim U + dim U^{\perp} = dim V.
- (d) $U = (U^{\perp})^{\perp}$

Do 10.4.

6.4 Bilinear- und Sesquilinearformen

Definition 6.4.1 Sei K ein beliebiger Körper und V ein K-Vektorraum.

- (a) Eine **Bilinearform** auf V ist eine bilineare Abbildung $\beta: V \times V \to K$ (siehe Definition 5.1.1), d. h. für alle $v, v', w, w' \in V$ und alle $r \in K$ gilt: $\beta(rv+v',w) = r\beta(v,w) + \beta(v',w)$ und $\beta(v,rw+w') = r\beta(v,w) + \beta(v,w')$.
- (b) Eine Bilinearform $\beta \colon V \times V \to K$ heißt **symmetrisch**, wenn für alle $v, w \in V$ gilt: $\beta(v, w) = \beta(w, v)$.

Definition 6.4.2 *Sei V ein* \mathbb{C} -*Vektorraum.*

- (a) Eine **Sesquilinearform** auf V ist eine Abbildung $\beta \colon V \times V \to \mathbb{C}$, so dass für alle $v, v', w, w' \in V$ und alle $r \in K$ gilt: $\beta(rv + v', w) = r\beta(v, w) + \beta(v', w)$ und $\beta(v, rw + w') = \bar{r}\beta(v, w) + \beta(v, w')$.
- (b) Eine Sesquilinearform $\beta \colon V \times V \to \mathbb{C}$ heißt **hermitesch**, wenn für alle $v, w \in V$ gilt: $\beta(v, w) = \overline{\beta(w, v)}$.
- **Lemma 6.4.3** (a) Ist v_1, \ldots, v_n eine Basis von V und ist $A = (a_{ij})_{ij} \in K^{n \times n}$ eine Matrix, so existiert genau eine Bilinearform $\beta \colon V \times V \to K$, so dass $\beta(v_i, v_j) = a_{ij}$ gilt für alle i, j.
 - (b) Im Fall $K = \mathbb{C}$ gilt die gleiche Aussage auch für Sequilinearformen.

Von nun an sei $\mathbb K$ entweder $\mathbb R$ oder $\mathbb C$, und V sei ein euklidischer bzw. unitärer $\mathbb K$ -Vektorraum.

Satz 6.4.4 Ist $f \in \text{End}(V)$ ein Endomorphismus, so ist

$$\beta_f \colon V \times V \to \mathbb{K}, (v, w) \mapsto \langle v, f(w) \rangle$$

eine Bilinearform (im Fall $\mathbb{K} = \mathbb{R}$) bzw. eine Sesquilinearform (im Fall $\mathbb{K} = \mathbb{C}$), und zu jeder Bilinearform/Sequilinearform β existiert genau ein Endomorphismus $f \in \text{End}(V)$, so dass $\beta = \beta_f$ gilt.

Satz 6.4.5 Zu jedem Endomorphismus $f \in \text{End}(V)$ existiert genau ein Endomorphismus $g \in \text{End}(V)$, so dass für alle $v, w \in V$ gilt: $\langle f(v), w \rangle = \langle v, g(w) \rangle$.

Definition 6.4.6 (a) Ist $f \in \text{End}(V)$, so wird die Abbildung g aus Satz 6.4.5 die zu f adjungierte Abbildung genannt. Notation dafür: f^* .

(b) Ein Endomorphismus f heißt **selbstadjungiert**, wenn $f = f^*$ gilt.

Bemerkung 6.4.7 Es gilt $f^{**} = f$.

Bemerkung 6.4.8 Ein Endomorphismus $f \in \text{End}(V)$ is genau dann eine orthogonale Transformation, wenn $f^* = f^{-1}$ gilt.

Bemerkung 6.4.9 Angewandt auf Matrizen $A \in \mathbb{K}^{n \times n}$ (aufgefasst als Endomorphismen von \mathbb{K}^n mit dem Standard-Skalarprodukt) erhält man:

- Die zu A adjungierte Abbildung ist gegeben durch $A^* = \bar{A}^T$
- A ist selbstadjungiert genau dann, wenn A symmetrisch (im Fall $\mathbb{K} = \mathbb{R}$) bzw. hermitesch (im Fall $\mathbb{K} = \mathbb{C}$) ist.
- A ist orthogonal (im Sinne von Definition 6.2.1) genau dann, wenn $\bar{A}^T = A^{-1}$ ist; vgl. Satz 6.2.8.

Mo 14.4.

Bemerkung 6.4.10 $Sei \beta: V \times V \to \mathbb{K}$ eine $Bilinear form \ (im \ Fall \ \mathbb{K} = \mathbb{R})$ bzw. eine $Sequilinear form \ (im \ Fall \ \mathbb{K} = \mathbb{C})$ und $sei \ f \in End(V)$ der entprechende Endomorphismus aus Satz 6.4.4. Dann $gilt: \beta$ is symmetrisch bzw. hermitesch $genau \ dann, wenn \ f \ selbstadjungiert ist.$

6.5 Der Spektralsatz und Folgerungen

Sei weiterhin $\mathbb K$ entweder $\mathbb R$ oder $\mathbb C,$ und Vsei ein euklidischer bzw. unitärer $\mathbb K\text{-Vektorraum}.$

Definition 6.5.1 Ein Endomorphismus $f: V \to V$ heißt **normal**, wenn gilt: $f \circ f^* = f^* \circ f$.

Beispiel 6.5.2 (a) Ist f selbstadjungiert, so ist f normal.

(b) Ist f orthogonal (im Fall $\mathbb{K} = \mathbb{R}$) bzw. unitär (im Fall $\mathbb{K} = \mathbb{C}$), so ist f normal.

- Satz 6.5.3 (Spektralsatz für normale Endomorphismen über \mathbb{C}) Sei V ein endlich-dimensionaler unitärer \mathbb{C} -Vektorraum. Ein Endomorphismus $f \in \operatorname{End}(V)$ ist normal genau dann, wenn V eine Orthonormalbasis aus Eigenvektoren von f besitzt.
- Satz 6.5.4 (Spektralsatz für normale Endomorphismen über \mathbb{R}) Sei V ein endlich-dimensionaler euklidischer \mathbb{R} -Vektorraum, und sei $f \in \operatorname{End}(V)$ ein Endomorphismus mit der folgenden Eigenschaft:
- (*) Ist $U \subseteq V$ ein nicht-trivialer⁸ Untervektorraum mit $f(U) \subseteq U$, so hat die Einschränkung $f|_U$ mindestens einen Eigenwert (in \mathbb{R}).

Unter dieser Annahme (\star) ist f normal genau dann, wenn V eine Orthonormalbasis aus Eigenvektoren von f besitzt.

Korollar 6.5.5 (Hauptachsentransformation für Endomorphismen) Sei V endlich-dimensional und sei $f \in \operatorname{End}(V)$ selbstadjungiert. Dann existiert eine Orthonormalbasis v_1, \ldots, v_n von V aus Eigenvektoren von f, und alle Eigenwerte von f sind reell.

Do 17.4.

Bemerkung 6.5.6 Für Matrizen besagt Korollar 6.5.5: Ist $A \in \mathbb{K}^{n \times n}$ symmetrisch bzw. hermitesch, so existiert eine orthogonale bzw. unitäre Matrix S, so dass $S^{-1}AS$ eine Diagonalmatrix mit reellen Einträgen ist.

Korollar 6.5.7 Eine symmetrische bzw. hermitesche Matrix $A \in \mathbb{K}^{n \times n}$ ist genau dann positiv definit, wenn alle ihre Eigenwerte positiv sind.

Korollar 6.5.8 Sei $A \in \mathbb{K}^{n \times n}$ symmetrisch bzw. hermitesch, und sei $S \in \operatorname{GL}_n(\mathbb{K})$ so, dass $D := S^*AS$ eine Diagonalmatrix ist. (Solche S existieren immer, nach Bemerkung 6.5.6.) Dann ist A positiv definit genau dann, wenn alle Diagonaleinträge von D positive reelle Zahlen sind.

Satz 6.5.9 (Hauptminoren-Kriterium) Sei $A \in \mathbb{K}^{n \times n}$ symmetrisch bzw. hermitesch. Für $k \leq n$ sei $A_k \in \mathbb{K}^{k \times k}$ die Matrix, die aus den ersten k Zeilen und ersten k Spalten von A besteht. (Diese A_k nennt man die **Hauptminoren** von A.) Dann gilt: A ist positiv definit genau dann, wenn $\det A_k > 0$ ist für $k = 1, \ldots, n$.

Do 24.4.

Korollar 6.5.10 Seien $b_{ij} \in \mathbb{R}$ für $1 \le i \le j \le n$ und sei $f(x_1, ..., x_n) = \sum_{1 \le i \le j \le n} b_{ij} x_i x_j$. (Eine solche Funktion nennt man eine **quadratische Form**.) Definiere $A = (a_{ij})_{ij} \in \mathbb{R}^{n \times n}$ durch: $a_{ij} = a_{ji} = \frac{1}{2}b_{ij}$ falls $i \ne j$ und $a_{ii} = b_{ii}$. Dann hat f ein Minimum bei 0 genau dann, wenn das Hauptminoren-Kriterium erfüllt ist (d. h. wenn A positiv definit ist).

Korollar 6.5.11 (Hauptachsentransformation für Bilinearformen) Sei V endlich-dimensional und sei $\beta \colon V \times V \to \mathbb{K}$ eine symmetrische (im Fall $\mathbb{K} = \mathbb{R}$) bzw. hermitesche (im Fall $\mathbb{K} = \mathbb{C}$) Bilinearform. Dann existiert eine Orthonormalbasis v_1, \ldots, v_n von V, so dass $\beta(v_i, v_j) = 0$ gilt für $i \neq j$. Außerdem gilt $\beta(v_i, v_i) \in \mathbb{R}$ für alle i.

 $^{^8 {\}rm also}~U \neq \{0\}$

Satz 6.5.12 (Sylvesters Trägheitssatz) Sei V ein endlich-dimensionaler \mathbb{K} -Vektorraum und $\beta: V \times V \to \mathbb{K}$ eine symmetrische (im Fall $\mathbb{K} = \mathbb{R}$) bzw. hermitesche (im Fall $\mathbb{K} = \mathbb{C}$) Bilinearform. Dann existiert eine Basis v_1, \ldots, v_n von V, so dass für $1 \le i, j \le n$ gilt: $\beta(v_i, v_j) = 0$ falls $i \ne j$, und $\beta(v_i, v_i) \in \{-1, 0, 1\}$. Außerdem sind die Anzahlen

$$n_a = \#\{i \mid \beta(v_i, v_i) = a\}$$

(für a=-1,0,1) durch β eindeutig festgelegt, d. h. sie hängen nicht von der Wahl der Basis ab.

Mo 28.4.

Korollar 6.5.13 Die Lösungsmenge (in \mathbb{R}^2) einer Gleichung der Form $ax^2 + bxy + cy^2 + dx + ey + f = 0$ ist ein Kreis, eine Ellipse, eine Parabel, eine Hyperbel, zwei Geraden, eine Gerade, ein Punkt oder leer.

7 Die Jordansche Normalform

7.1 Direkte Summen und Komplemente

Sei K ein beliebiger Körper.

- **Definition 7.1.1** (a) Sind V und V' K-Vektorräume, so schreiben wir $V \oplus V'$ für die Menge $V \times V'$, aufgefasst als K-Vektorraum mit komponentenweiser Addition und Skalarmultiplikation. Wir nennen $V \oplus V'$ die (äußere) direkte Summe von V und V'.
 - (b) Sind U und U' Untervektorräume eines K-Vektorraums V mit $U \cap U' = \{0\}$, so identifizieren wir $U \oplus U'$ mit U + U', indem wir $(u, u') \in U \times U'$ mit $u + u' \in U + U'$ identifizieren, d. h. statt U + U' schreibt man $U \oplus U'$, wenn man zusätzlich ausdrücken will, dass $U \cap U' = \{0\}$ gilt, und man nennt dies die (innere) direkte Summe von U und U'.

Satz 7.1.2 Sei V ein K-Vektorraum und seien $U_1, \ldots, U_n \subseteq V$ Untervektorräume. Dann sind äquivalent:

- (a) $V = ((\cdots (U_1 \oplus U_2) \oplus \ldots) \oplus U_{n-1}) \oplus U_n$
- (b) Jeder Vektor $v \in V$ lässt sich auf eindeutige Weise als Summe $v = v_1 + \cdots + v_n$ schreiben mit $v_i \in U_i$.

Ist $u_{i,1}, \ldots, u_{i,m_i}$ eine Basis von U_i für jedes i, so ist auch die folgende Bedingung zu den obigen Bedingungen äquivalent:

(c) $(u_{i,j})_{1 \leq i \leq n, 1 \leq j \leq m_i}$ ist eine Basis von V.

Bemerkung 7.1.3 Aus dem Satz folgt auch, dass die Klammerung bei (a) egal ist; wir schreiben in Zukunft einfach $V = U_1 \oplus \cdots \oplus U_n$.

Mo 5.5.

Definition 7.1.4 Sei V ein K-Vektorraum und U ein Untervektorraum. Ein Komplement von U (in V) ist ein Untervektorraum $U' \subseteq V$, so dass $U \oplus U' = V$ gilt.

Bemerkung 7.1.5 Komplemente existieren immer, sind aber nicht eindeutig. Ist V endlich-dimensional, $U \subseteq V$ und $U' \subseteq V$ ein Komplement von U, so gilt $\dim U' = \dim V - \dim U.$

Bemerkung 7.1.6 Ist V ein K-Vektorraum, $U \subseteq V$ ein Untervektoraum und $U' \subseteq V$ ein Komplement von U, so ist die Abbildung $U' \to V/U, u' \mapsto \bar{u}' = u' + U$ ein Isomorphismus von Vektorräumen.

7.2Nilpotente Endomorphismen

Im Folgenden sei K ein beliebiger Körper und V ein K-Vektorraum.

Definition 7.2.1 Ein Endomorphismus $f \in \text{End}(V)$ heißt nilpotent, wenn es ein $k \in \mathbb{N}$ gibt, so dass $f^k = 0$ ist. Eine Matrix $A \in K^{n \times n}$ heißt nilpotent, wenn sie als Endomorphismus von K^n nilpotent ist, d.h. wenn es ein $k \in \mathbb{N}$ qibt, so dass $A^k = 0$ ist. Das kleinste solche k heißt **Nilpotenzgrad** (auch: Nilpotenzindex) von f bzw. A.

Von nun an nehmen wir an, dass V endlich-dimensional ist.

Satz 7.2.2 Sei $f \in \text{End}(V)$ nilpotent, und sei $k \in \mathbb{N}$ der Nilpotenzgrad von f. Setze $U_{\ell} := \ker(f^{\ell})$ und $W_{\ell} := \operatorname{im}(f^{\ell})$ für $\ell \in \mathbb{N}$. Dann gilt:

(a)
$$\{0\} = U_0 \subsetneq U_1 \subsetneq \cdots \subsetneq U_{k-1} \subsetneq U_k = V$$

(b) $V = W_0 \supsetneq W_1 \supsetneq \cdots \supsetneq W_{k-1} \supsetneq W_k = \{0\}$

(b)
$$V = W_0 \supset W_1 \supset \cdots \supset W_{k-1} \supset W_k = \{0\}$$

Insbesondere ist $k \leq \dim V$.

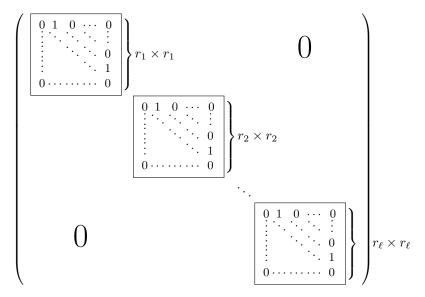
Beispiel 7.2.3 Die Matrix

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \cdots & \cdots & 0 \end{pmatrix}$$

nilpotent, und für $\ell = 0, \ldots, n$ gilt:

$$\ker(A^{\ell}) = \{ \begin{pmatrix} a_1 \\ \vdots \\ a_{\ell} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \mid a_i \in K \} \qquad und \qquad \operatorname{im}(A^{\ell}) = \{ \begin{pmatrix} a_1 \\ \vdots \\ a_{n-\ell} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \mid a_i \in K \}.$$

Satz 7.2.4 (Jordansche Normalform von nilpotenten Matrizen) Ist $f \in$ $\operatorname{End}(V)$ ein nilpotenter Endomorphismus, so existiert ein Isomorphismus $g\colon K^n\to$ V (für $n = \dim V$), so dass die Matrix von $g^{-1} \circ f \circ g$ die Form



hat für $r_1, \ldots, r_\ell \geq 1$. (Im Fall $r_i = 1$ ist gemeint, dass der entsprechende Block einfach nur $\boxed{0}$ ist.) Hierbei sind r_1, \ldots, r_ℓ bis auf Reihenfolge durch f eindeutig bestimmt.

Do 8.5.

Bemerkung 7.2.5 In Satz 7.2.4 ist der Nilpotenzgrad von f das Maximum $\max\{r_1,\ldots,r_\ell\}$.

Korollar 7.2.6 Ist $f \in \text{End}(V)$ nilpotent und $n = \dim V$, so gilt für das charakteristische Polynom von $f : \chi_f(x) = x^n$. Insbesondere ist 0 der einzige Eigenwert von f.

Lemma 7.2.7 Ist $f \in \text{End}(V)$ nilpotent und $\lambda \in K^{\times}$, so ist $f + \lambda \operatorname{id}_{V}$ invertierbar.

7.3 Die Hauptraumzerlegung

Sei weiterhin K ein Körper und V ein endlich-dimensionaler K-Vektorraum.

Definition 7.3.1 Sei $f \in \text{End}(V)$. Ein Untervektorraum $U \subseteq V$ heißt f-invariant, wenn $f(U) \subseteq U$ gilt. Ist dies der Fall, so fassen wir $f|_U$ oft als Endomorphismus von U auf.

Lemma 7.3.2 $Sei f \in End(V)$.

(a) Es existiert ein $N \in \mathbb{N}$, so dass für jedes $N' \geq N$ gilt: im $f^N = \operatorname{im} f^{N'}$ und $\operatorname{ker} f^N = \operatorname{ker} f^{N'}$.

Sei nun N wie in (a). Dann gilt:

(b) $V = \operatorname{im} f^N \oplus \ker f^N$.

(c) Ist $g \in \text{End}(V)$ ein Endomorphismus, der mit f kommutiert, d.h. so dass $f \circ g = g \circ f$ gilt, so sind ker f^N und im f^N g-invariant.

Definition 7.3.3 Sei $f \in \text{End}(V)$ und $\lambda \in K$. Der **Eigenraum** von f zum Eigenwert λ ist

$$\operatorname{Eig}_{\lambda}(f) := \ker(f - \lambda \operatorname{id}_{V}).$$

Der **Hauptraum** von f zum Eigenwert λ ist

$$\operatorname{Hau}_{\lambda}(f) := \ker(f - \lambda \operatorname{id}_{V})^{N}$$

für "hinreichend große N", d. h. so dass für alle $N' \geq N$ gilt: $\ker(f - \lambda \operatorname{id}_V)^{N'} = \ker(f - \lambda \operatorname{id}_V)^N$.

Bemerkung 7.3.4 $\operatorname{Eig}_{\lambda}(f)$ und $\operatorname{Hau}_{\lambda}(f)$ kann man für beliebige $\lambda \in K$ definieren, aber nur wenn λ ein Eigenwert von f ist, sind diese Räume nicht-trivial. Genauer gilt:

 λ ist ein Eigenwert von $f \iff \operatorname{Eig}_{\lambda}(f) \neq \{0\} \iff \operatorname{Hau}_{\lambda}(f) \neq \{0\}.$

Definition 7.3.5 Wir nennen einen Körper K algebraisch abgeschlossen, wenn jedes nicht-konstante Polynom $f \in K[X]$ mindestens eine Nullstelle besitzt.

Bemerkung 7.3.6 Der Fundamentalsatz der Algebra (siehe Bemerkung 2.3.14) besagt also: \mathbb{C} ist algebraisch abgeschlossen. Außerdem werden wir in der Algebra-Vorlesung sehen: Jeder beliebige Körper K lässt sich zu einem algebraisch abgeschlossenen Körper $L \supseteq K$ vergrößern.

Satz 7.3.7 (Hauptraumzerlegung) Ist K algebraisch abgeschlossen, V ein endlich-dimensionaler K-Vektorraum, $f \in \text{End}(V)$ und sind $\lambda_1, \ldots, \lambda_r$ die Eigenwerte von f, so gilt

$$V = \operatorname{Hau}_{\lambda_1}(f) \oplus \cdots \oplus \operatorname{Hau}_{\lambda_r}(f).$$

Lemma 7.3.8 Sei $f \in \text{End}(V)$, seien $\lambda, \lambda' \in K$, und sei $g := f - \lambda \operatorname{id}_V$. Dann gilt: $H := \operatorname{Hau}_{\lambda'}(f)$ ist g-invariant, und $g|_H \in \operatorname{End}(H)$ ist entweder ein Automorphismus (nämlich falls $\lambda' \neq \lambda$) oder nilpotent (nämlich falls $\lambda' = \lambda$).

Index

/, 15	$\mathcal{P}, \frac{9}{9}$
U^{\perp} , 36	$\mathbb{Q}, \frac{3}{3}$
#, <mark>8</mark>	$\mathbb{R}, \frac{3}{3}$
<, 6 €	\perp , $\frac{3}{3}$ 5
⇔, 7	$U^{\perp}, 36$
\Rightarrow , 6	U, 8
	∨, 6
±1:1, 11	×, 9
\hookrightarrow , 11	
\mapsto , 10	χ_A , $\frac{32}{7}$
\neg , 6	$\mathbb{Z}, \frac{3}{3}$
\oplus , $\frac{39}{}$	abbilden 10
$\perp,35$	abbilden, 10
\setminus , 8	Abbildung, 10
\sim , 12	bilineare, 33
<i>→</i> , 11	hermitesche, 33
\rightarrow , 10	Identitätsabbildung, 10
$\mathbb{R}_{\geq 0}, \frac{33}{3}$	inverse, 11
Sym, 13	lineare, 24
, 12	positiv definite, 33
∀, 7	sesquilineare, 33
∧, <mark>6</mark>	symmetrische, 33
Abb, 10	Umkehrabbildung, 11
Aut, 31	abelsch, 13
⊆, 8	abgeschlossen
⊋, 8	algebraisch, 18
deg, 17	abgeschlossen unter einer Verknüpfung,
	15
det, 29	abgeschlossen unter Inversen, 15
dim, 21	abhängig
3, 7	linear, 20
\in , 7	abzählbar (unendlich), 21
e_i (Standardbasis), 21	Additive Notation, 14
$\exists^{=1}, 7$	adjungierte Abbildung, 37
End, 31	algebraisch abgeschlossen, 18, 42
f-invariant, 41	All-Quantor, 7
$\mathbb{F}_p, \frac{16}{2}$	alternierend, 29
GL, 27, 31	äquivalent, 12
Hom, 24	-e Aussagen, 7
$I_n, \frac{23}{}$	Äquivalenz
id, 10	von Aussagen, 7
im, 11	
ker, 25	Aquivalenzrelation, 12
$\mathbb{N}, \frac{3}{3}$	Assoziativität, 13
\cap , 8	Automorphismus, 31
n -Tupel, $\frac{3}{}$	Axiom
0, 10, 13	Gruppenaxiome, 13
\oplus , 39	Ringaxiome, 14

Basis, 20	endliche Menge, 8
Orthonormalbasis, 35	Endomorphismus, 31
Standardbasis, 21	Vektorraum-Endomorphismus, 31
Basisergänzungssatz, 21	Entwicklung
Basiswechselmatrix, 26	nach einer Spalte, 31
Bijektion, 11	nach einer Zeile, 30
bijektiv, 11	Entwicklungssatz
Bild, 11	Laplacescher, 30
bilinear, 29	(erweiterte) Koeffizientenmatrix, 4
Bilinearform, 36	erzeugen, 20
Bilinearität, 33	Erzeugendensystem, 20
	Erzeugnis, 19
Cauchy-Schwarz-Ungleichung, 34	euklidischer Vektorraum, 33
charakteristische Polynom	Existenz-Quantor, 7
eines Endomophismusses, 32	,
charakteristisches Polynom	Faktorgruppe, 16
einer Matrix, 32	Faktorvektorraum, 26
	fast alle, 16
Definitionsbereich, 10	Folge, 16
Determinante, 29	folgen aus, 6
eines Endomophismusses, 31	Formel
Diagonaleintrag, 32	von Leibniz, 31
diagonalisierbar, 32	Fundamentalsatz der Algebra, 18
Diagonalmatrix, 32	Funktion, 10
Differenz	
von Mengen, 8	ganze Zahl, 3
Dimension, 21	Gauß-Elimination, 6
direkte Summe	general linear group, 27
innere, 39	geordnetes Paar, 3
äußere, <mark>39</mark>	geschnitten, 8
disjunkt, 8	Gleichungssystem
distributiv, 14	lineares, 4
Distributivität, 14	Grad, 17
Dreiecksmatrix	Gram-Schmidt-Orthogonalisierung, 35
obere, 30	Graph, 10
Dreiecksungleichung, 34	Gruppe, 13
	Obergruppe, 15
echte Teilmenge, 8	symmetrische, 13
Eigenraum, 42	Untergruppe, 15
Eigenvektor, 32	Gruppenaxiome, 13
Eigenwert, 32	
Einheitsmatrix, 23	Hauptachsentransformation
Eins-Element, 14	für Bilinearformen, 38
Einschränkung, 11	für Endomorphismen, 38
Eintrag, 3	Hauptminor, 38
Element, 7	Hauptminoren-Kriterium, 38
neutrales, 13	Hauptraum, 42
elementare Spaltentransformation, 28	Hauptraumzerlegung, 42
elementare Zeilentransformation, 5	hermitesch, 36
endlich dimensional, 21	hermitesche Matrix, 34

Hermitezität, 33	lineare Abbildung, 24
homogenes lineares Gleichungssystem,	lineare Abhängigkeit, 20
19	lineare Gleichung, 3
Homomorphiesatz	über K , 14
für Vektorräume, 27	lineare Hülle, 19
Homomorphismus	lineares Gleichungssystem, 4
Vektorraum-Homomorphismus, 24	über K , 14
,	Linearkombination, 19
Identität, 10	nicht-triviale, 19
Identitätsabbildung, 10	triviale, 19
implizieren, 6	Lösung
Indexmenge, 8	einer linearen Gleichung, 4
Injektion, 11	0.000
injektiv, 11	Matrix, 4
invariant, 41	Diagonalmatrix, 32
Inverse, 11	einer linearen Abbildung bezüglich
Inverse Abbildung, 11	Basen, 24
inverse Matrix, 26	Einheitsmatrix, 23
Inverses, 13	hermitesche, 34
invertiebar	inverse, 26
-e Matrix, 26	invertierbare, 26
Isometrie, 34	Nullmatrix, 22
isomorph, 25	orthogonale, 34
Isomorphismus	positiv definite, 34
von Vektorräumen, 25	symmetrische, 34
von veneerraamen, 20	transponierte, 28
kanonische Abbildung, 13	unitär, 34
Kardinalität	Matrixmultiplikation, 22
einer Menge, 8	Matrixprodukt, 22
von unendlichen Mengen, 21	Menge, 7
kartesisches Produkt, 9	Obermenge, 8
Kern, 25	Potenzmenge, 9
Koeffizientenmatrix	Teilmenge, 8
erweiterte, 4	Untermenge, 8
kommutieren, 13	modulo, 15
kommutativ, 14	multilinear, 29
-e Gruppe, 13	Multiplikative Notation, 14
Komplement, 39	Mächtigkeit, 8
Komponente, 3	Wachingken, o
kongruent, 12	nach, 10
Konstante, 3	natürliche Zahl, 3
Körper, 14	Nebenklasse, 16
oberkörper, 15	neutrales Element, 13
Unterkörper, 15	nicht-triviale Linearkombintation, 19
Onterkorper, 10	nilpotent, 40
Laplacescher Entwicklungssatz, 30	Nilpotenzgrad, 40
leere Menge, 7	Nilpotenzindex, 40
Leibniz-Formel, 31	Norm, 33
linear abhängig, 20	normal, 37
linear unabhängig, 20	Normalform, 5
0.0/	1 1 O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

normiert, 29, 35	reflexive, 12
normiertes Polynom, 32	symmetrische, 12
Null-Element, 14	transitive, 12
Nullmatrix, 22	Ring, 14
Nullstelle, 17	kommutativer, 14
Nullvektor, 18	oberring, 15
,	Unterring, 15
obere Dreiecksmatrix, 30	Ringaxiome, 14
Obergruppe, 15	Räpresentant
Oberkörper, 15	einer Äquivalenzklasse, 13
Obermenge, 8	,
Oberring, 15	Sarrus
ohne	Regel von, 31
Mengendifferenz, 8	Satz
orthogonal, 34, 35	Basisergänzungssatz, 21
orthogonale Komplement, 36	Fundamentalsatz der Algebra, 18
orthogonale Transformation, 34	Gauß-Elimination, 6
Orthogonalisierung, 35	Schnitt, 8
Orthonormalbasis, 35	selbstadjungiert, 37
	Sesquilinearform, 36
Paar	Sesquilinearität, 33
geordnetes, 3	Signum, 31
Partition, 12	Skalar, 18
Pivot-Eintrag, 5	Skalarmultiplikation, 18
Pivot-Element, 5	Skalarprodukt, 33
Polynom, 16	Standard-Skalarprodukt, 33
charakteristisches, 32	Spaltenrang, 27
positiv definit, 34	Spaltentransformation
positive Definitheit, 33	elementare, 28
Potenzmenge, 9	Span, 19
Produkt	Spektralsatz für normale Endomorphis-
von Matrizen, 22	men
punktweise Skalarmultiplikation, 18	über $ℂ$, 38
punktweise Vektoraddition, 18	über $\mathbb{R}, \frac{38}{8}$
	Standard-Skalarprodukt, 33
quadratische Form, 38	Standardbasis, 21
quadratische Matrix, 22	Standardbasisvektor, 21
Quadrupel, 3	Summe
Quantor, 7	von Untervektorräumen, 21
Quotientengruppe, 16	Surjektion, 11
Quotientenring, 16	surjektiv, 11
Quotientenvektorraum, 26	Sylvesters Rang-Ungleichung, 27
D 07	Symmetrie, 33
Rang, 27	symmetrisch, 36
Rang-Ungleichung	symmetrische Gruppe, 13
von Sylvester, 27	symmetrische Matrix, 34
Reflexivität, 12	v , -
Regel von Sarrus, 31	teilbar, 12
Relation, 12	Teile
Äquivalenz-, 12	einer Partition, 12

```
teilen, 12
                                        Wertebereich, 10
Teilmenge, 8
                                        Zahl
Transformation
                                            ganze, 3
    elementare Zeilen-, 5
                                            natürliche, 3
    orthogonale, 34
                                        Zeilenrang, 28
    unitäre, 34
                                        Zeilentransformation
Transitivität, 12
                                            elementare, 5
Transponierte, 28
Tripel, 3
                                        Äquivalenzklasse, 12
triviale Linearkombination, 19
                                        überabzählbar, 21
Tupel, 3
Umkehrabbildung, 11
unabhängig
    linear, 20
unendlich dimensional, 21
unendliche Menge, 8
Ungleichung
    Sylvesters Rang-Ungleichung, 27
unitär, 34
unitäre Transformation, 34
unitärer Vektorraum, 33
Untergruppe, 15
Unterkörper, 15
Untermenge, 8
Unterring, 15
Untervektorraum, 19
Urbild, 11
Variable, 3
Vektor, 18
    Eigenvektor, 32
    normierter, 35
    Nullvektor, 18
Vektoraddition, 18
Vektorraum, 18
    euklidischer, 33
    unitärer, 33
    Untervektorraum, 19
Vektorraum-Homomorphismus, 24
Vektorraum-Isomorphismus, 25
vereinigt, 8
Vereinigung, 8
Verkettung, 10
Verknüfung
    assoziative, 13
Verknüpfung, 13
    von Abbildungen, 10
von Relationen, 12
Wert, 3
```