Mathematisches Institut Prof. Dr. Benjamin Klopsch

Erste Klausur (Nachdruck) Lineare Algebra I

Sommersemester 2022 21.07.2022

Nachname:	
V	
Vorname:	
Matrikelnr:	

Bitte beachten Sie die folgenden Hinweise:

- Beginnen Sie die Klausur nur nach der allgemeinen Aufforderung.
- Hilfsmittel: Ein individuell verfasstes A4-Blatt (beidseitig, in Handschriftgröße).
- Die Bearbeitungszeit beträgt 120 Minuten.
- Sie dürfen beliebig viele der umseitigen zehn Aufgaben bearbeiten.
- Bearbeiten Sie Aufgaben jeweils direkt unterhalb des Aufgabentextes und auf der bzw. den nachfolgenden Leerseiten.
- Bei Bedarf erhalten Sie zusätzliche Leerblätter. Beschriften Sie diese jeweils mit Ihrem Namen, Ihrer Matrikelnummer und der relevanten Aufgabennummer.
- Geben Sie am Ende das Aufgabenheft und ggf. zusätzliche Lösungsblätter nach Aufgabenreihenfolge geordnet ab.

Viel Erfolg!

Aufgabe 1 (8 Punkte)

Ergänzen Sie die fehlenden Einträge W,F ("wahr" bzw. "falsch") in der nachfolgenden Wahrheitstafel, mit Hilfe derer überprüft werden soll, ob für beliebige Mengen A,B,C stets gilt:

$$A \cap (B \cup C) = (A \cap B) \cup C. \tag{*}$$

Begründen Sie anschließend anhand der vollständigen Tafel, ob die Aussage (*) nun allgemein richtig ist oder nicht.

$x \in A$	$x \in B$	$x \in C$	$x \in B \cup C$	$x \in A \cap B$	$x \in A \cap (B \cup C)$	$x \in (A \cap B) \cup C$
W	W	W		W		W
W	W	F				W
W	F	W		F		W
F	F		F	F		F
F	W		W	F		W
F		F				F
F	F	W	W			W
	F	F		F		F

Aufgabe 2 (8 Punkte)

Betrachten Sie die folgenden Matrizen über dem Körper Q:

$$A = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & 0 \\ -1 & 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 5 & -7 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}.$$

Entscheiden Sie, welche Matrizen-Produkte XY für $X, Y \in \{A, B, C\}$ mit $X \neq Y$ definiert sind und berechnen Sie diese.

Entscheiden Sie ebenso, für welche $X \in \{A, B, C\}$ die Determinante $\det(X)$ definiert ist und berechnen Sie diese mithilfe des Laplaceschen Entwicklungssatzes.

Aufgabe 3 (6 Punkte)

Sei V ein Vektorraum über einem Körper K. Beweisen Sie, nur unter Verwendung der grundlegenden Vektorraum- bzw. Körperaxiome, die folgende bekannte Rechenregel:

Sind $a \in K$ und $v \in V$ mit av = 0, so folgt bereits a = 0 oder v = 0.

Aufgabe 4 (8 Punkte)

Für $n \in \mathbb{N}$ bezeichnen

- i(2,n) die Anzahl der injektiven Abbildungen von $\{0,1\}$ nach $\{1,2,\ldots,n\}$, und
- s(n,2) die Anzahl der surjektiven Abbildungen von $\{1,2,\ldots,n\}$ auf $\{0,1\}$.

Bestimmen Sie explizite Formeln für i(2,n) und s(n,2) und begründen Sie ihr Ergebnis knapp. Berechnen Sie anhand Ihrer Formeln insbesondere i(2,n) und s(n,2) für n=10.

Aufgabe 5 (6 Punkte)

Bestimmen Sie explizit die Menge der Fehlstände der Permutation $\pi \in \text{Sym}(7)$, die die nachfolgende Abbildungstafel besitzt:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 4 & 1 & 2 & 7 & 6 \end{pmatrix}.$$

Beantworten Sie weiter:

- Welches Signum hat π ?
- Gehört π zur alternierenden Gruppe Alt(7)?

Aufgabe 6 (8 Punkte)

Betrachten Sie die Matrix

$$A = \begin{pmatrix} 5 & 0 & 2 & x \\ -1 & y & 3 & 1 \end{pmatrix} \in \operatorname{Mat}_{2,4}(\mathbb{Q}),$$

wobei $x, y \in \mathbb{Q}$ Parameter darstellen.

Bestimmen Sie, in Abhängigkeit von x, y, durch eine Kette geeigneter und anzugebender Elementarumformungen die reduzierte Zeilenstufenform von A.

Aufgabe 7 (8 Punkte)

Bestimmen Sie für den Körper $K = \mathbb{Q}$ bzw. für den Körper $K = \mathbb{F}_2 = \{0, 1\}$ jeweils eine Basis für die lineare Hülle der Vektoren

$$v_1 = (1, 2, 1, 0), \quad v_2 = (2, 1, 0, 1), \quad v_3 = (1, 0, 1, 2), \quad v_4 = (0, 1, 2, 1)$$

des Standardvektorraums K^4 .

Aufgabe 8 (20 Punkte)

Sei $V = \mathbb{R}^2$ der reelle Standardvektrorraum mit der Standardbasis $\mathfrak{E} = (e_1, e_2)$, für $e_1 = (1,0)$ und $e_2 = (0,1)$. Es bezeichne $\sigma \colon V \to V$ die Spiegelung an der Geraden, die durch den Ursprung (0,0) und durch den Punkt v = (2,1) verläuft.

- (a) Zeigen Sie: v und w = (-1, 2) bilden eine (geordnete) Basis $\mathfrak{B} = (v, w)$ für V.
- (b) Geben Sie die Koordinatenmatrix $[\sigma]_{\mathfrak{B}}$ bezüglich der Basis \mathfrak{B} an, mit einer knappen Begründung.
- (c) Bestimmen Sie die Koordinatenmatrix $[\sigma]_{\mathfrak{E}}$ bezüglich der Standardbasis \mathfrak{E} .

Aufgabe 9 (28 Punkte)

Sei $\alpha\colon\mathbb{Q}^3\to\mathbb{Q}^3$ der lineare Endomorphismus des Standaradvektorraums \mathbb{Q}^3 mit Koordinatenmatrix

$$A = [\alpha]_{\mathfrak{E}} = \begin{pmatrix} -5 & 2 & 10 \\ -1 & 0 & 1 \\ -5 & 1 & 10 \end{pmatrix} \in \operatorname{Mat}_{3}(\mathbb{Q})$$

bzgl. der Basis $\mathfrak{E} = (e_1, e_2, e_3)$, bestehend aus $e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)$.

- (a) Verifizieren Sie mittels geeigneter Zeilenumformungen, dass A (und damit α) den vollen Rang 3 hat, und berechnen Sie $A^{-1} = [\alpha^{-1}]_{\mathfrak{E}}$.
- (b) Bestimmen Sie den Untervektorraum

$$U = \{ v \in \mathbb{Q}^3 \mid v\alpha = 5v \},$$

indem Sie eine Basis für U berechnen.

- (c) Verifizieren Sie, dass die Abbildung $\beta \colon \mathbb{Q}^3 \to \mathbb{Q}^3$, $v \mapsto (v\alpha)\alpha + v$ linear ist und geben Sie die zugehörige Koordinatenmatrix $B = [\beta]_{\mathfrak{E}}$ an.
- (d) Geben Sie $W = \text{Kern}(\beta)$, den Kern der linearen Abbildung β aus (c), an, indem Sie eine Basis für W bestimmen.
- (e) Zeigen Sie, dass der Vektorraum \mathbb{Q}^3 sich als direkte Summe $\mathbb{Q}^3 = U \oplus W$ zerlegt, wobei U wie in (b) und W wie in (d) gegeben sind.
- (f) Gemäß (e) ergänzen sich die von Ihnen gefundenen Basen für U und W zu einer Basis für \mathbb{Q}^3 . Geben Sie diese Basis noch einmal explizit als geordnete Basis \mathfrak{B} an und berechnen Sie $A' = [\alpha]_{\mathfrak{B}}$ sowie $S \in \mathrm{GL}_3(\mathbb{Q})$ mit $S^{-1}AS = A'$.

Aufgabe 10 (20 Punkte)

Sei $n \in \mathbb{N}$, und sei V ein n-dimesionaler Vetorraum über einem Körper K. Sei $\alpha \colon V \to V$ ein Endomorphismus von V. Für $m \in \mathbb{N}$ und die m-fache Hintereinanderausführung α^m von α seien $U_m = \operatorname{Kern}(\alpha^m)$ und $W_m = \operatorname{Bild}(\alpha^m)$.

- (a) Zeigen Sie: $V \supseteq W_1 \supseteq W_2 \supseteq \ldots \supseteq W_n$.
- (b) Zeigen Sie weiter: $W_n = W_{n+1} = \ldots = W_{2n}$.
- (c) Folgern Sie aus (b): V zerlegt sich in $V = U_n \oplus W_n$.
- (d) Bestimmen Sie, für n=4 und $K=\mathbb{Q}$, einen Endomorphismus $\alpha:\mathbb{Q}^4\to\mathbb{Q}^4$, so dass für diesen $U_m\cap W_m\neq\{0\}$ für $m\in\{1,2,3\}$ gilt (und sich somit nicht schon vorzeitig eine Zerlegung wie in (c) ergibt).