Modelltheorie II – Kurzskript

Inhaltsverzeichnis

1	\mathbf{Bev}	Bewertete Körper		
	1.1	Beträge	2	
	1.2	Vervollständigung	3	
	1.3	Bewertete Körper	4	
	1.4	Bewertungsringe	5	
	1.5	Fortsetzung von Bewertungen	5	
	1.6	Newton-Polygone	6	
	1.7	Henselsche Körper	6	
	1.8	Anwendung auf diophantische Gleichungen	7	
2 Quantorenelimination in bewerteten Körpern		antorenelimination in bewerteten Körpern	8	
	2.1	Leitterme	8	
	2.2	Quantorenelimination: Die Aussagen	9	
	2.3	Polynome und rv	10	
	2.4	Beweis von Quantorenelimination	10	
	2.5	Der Satz von Ax-Kochen/Ershov und andere Folgerungen	11	
	2.6	Bessere Quantorenelimination in Spezialfällen	12	
3	Rationalität von Poincaré-Reihen			
	3.1	Zerlegung in krumme Quader	13	
	3.2	Messen in \mathbb{Q}_p	13	
	3.3	Rationalität von Presburger-Poincaré-Reihen	14	
	3.4	Rationalität von L_{DP} -Poincaré-Reihen	14	

1 Bewertete Körper

1.1 Beträge

Definition 1.1.1 Sei K ein Körper. Ein **Betrag** auf K ist eine Abbildung $|\cdot|: K \to \mathbb{R}_{>0}$ mit:

- (a) $|x| = 0 \iff x = 0$
- (b) $|xy| = |x| \cdot |y|$
- (c) $|x+y| \le |x| + |y|$ (Dreiecksungleichung).

Beispiel 1.1.2 Auf $K \subset \mathbb{R}$: der normale Betrag: $|x|_{\mathbb{R}} = x$ falls $x \geq 0$ und $|x|_{\mathbb{R}} = -x$ falls $x \geq 0$.

Beispiel 1.1.3 Auf $K \subset \mathbb{C}$: der komplexe Betrag: $|x+iy|_{\mathbb{C}} = \sqrt{x^2+y^2}$ für $x,y \in \mathbb{R}$.

Beispiel 1.1.4 Der triviale Betrag auf einem beliebigen Körper $K: |0|_0 = 0$, $|x|_0 = 1$ für $x \in K^{\times}$.

Bemerkung 1.1.5 Es gilt: |1| = 1; |x| = |-x|; $|\frac{1}{x}| = \frac{1}{|x|}|$ für $x \in K$.

Definition 1.1.6 Ein Betrag $|\cdot|$ heißt nicht-archimedisch, wenn die ultrametrische Dreiecksungleichung gilt:

$$|x+y| \le \max\{|x|, |y|\}$$

Sonst heißt $|\cdot|$ archimedisch.

Beispiel 1.1.7 Sei p eine Primzahl. Ist $x = p^r \cdot \frac{m}{n} \in \mathbb{Q}^{\times}$, für $m, n \in \mathbb{Z}$ nicht durch p teilbar und $r \in \mathbb{Z}$ beliebig, so setzen wir $|x|_p = p^{-r}$. Außerdem setzen wir $|0|_p = 0$. Dies ist ein (nicht-archimedischer) Betrag auf \mathbb{Q} , der p-adische Betrag.

Beispiel 1.1.8 Sei K ein beliebiger Körper und $p \in K[X]$ ein beliebiges irreduzibles Polynom. Dann lässt sich jedes Element $f \in K(X)^{\times}$ schreiben als $f = p^r \cdot \frac{g}{h}$, für $g, h \in K[X]$, die nicht durch p teilbar sind und $r \in \mathbb{Z}$. Wir setzen dann $|f|_p := e^{-r}$; außerdem setzen wir $|0|_p = 0$. Dies definiert einen nicht-archimedischen Betrag auf K(X). Ist p = X - a, für $a \in K$, so gibt $|f|_p$ die Vielfachheit der Nullstelle a von f an (wobei Polstellen negativ zählen).

Beispiel 1.1.9 Sei K ein beliebiger Körper. Für $f = \frac{g}{h} \in K(X)^{\times}$ (mit $g, h \in K[X]$) setzen wir $|f|_{\infty} := e^{\deg f - \deg f}$. Außerdem setzen wir $|0|_{\infty} := 0$. Dies ist ein (nicht-archimedischer) Betrag auf K(X).

Satz 1.1.10 (Satz von Ostrowski) Die einzigen Beträge auf \mathbb{Q} sind der triviale, $x \mapsto |x|_{\mathbb{R}}^{\lambda}$ für $\lambda \in (0,1)$, und $x \mapsto |x|_{p}^{\lambda}$ für $\lambda \in (0,\infty)$ und p prim.

Lemma 1.1.11 Sei K ein Körper mit einem Betrag $|\cdot|$, und sei $A := \{|n \cdot 1| \mid n \in \mathbb{Z}\}$. Ist $|\cdot|$ archimedisch, so ist A unbeschränkt. (Inbesondere hat K Charakteristik 0.) Ist $|\cdot|$ nicht-archimedisch, so ist $A \subset [0,1]$.

1.2 Vervollständigung

Lemma 1.2.1 Sei K ein Körper und $|\cdot|$ ein Betrag auf K. Dann ist d(a,b) := |a-b| eine Metrik auf K. Addition, Multiplikation, $x \mapsto -x$ und $x \mapsto \frac{1}{x}$ (für $x \neq 0$) sind stetig bezüglich der von dieser Metrik induzierten Topologie.

Satz 1.2.2 Sei K ein Körper mit einem Betrag $|\cdot|$ und sei \hat{K} die Vervollständigung von K bezüglich der von $|\cdot|$ induzierten Metrik. Dann lassen sich die Addition, die Multiplikation und der Betrag von K (auf eindeutige Weise) stetig auf \hat{K} fortsetzen, und \hat{K} wird auf diese Art auch ein Körper mit Betrag.

Beispiel 1.2.3 Die Vervollständigung von \mathbb{Q} bezüglich $|\cdot|_{\mathbb{R}}$ ist \mathbb{R} .

Definition 1.2.4 Sei p eine Primzahl. Die Menge der p-adischen Zahlen ist definiert als die Menge der formalen Summen der Form

$$\mathbb{Q}_p := \{ \sum_{i \ge N} r_i p^i \mid N \in \mathbb{Z}, \forall i \colon 0 \le r_i$$

Die Summe und das Produkt von zwei p-adischen Zahlen sind so definiert, wie bei der Darstellung von Zahlen in Basis p. Der (p-adische) Betrag einer p-adischen Zahl $a = \sum_{i \geq N} r_i p^i \in \mathbb{Q}_p$ mit $r_N \neq 0$ ist definiert durch $|a|_p := p^{-N}$. (Und: $|0|_p := 0$.) Die **ganzen** p-adischen Zahlen sind

$$\mathbb{Z}_p := \{ \sum_{i > 0} r_i p^i \in \mathbb{Q}_p \mid \forall i \colon 0 \le r_i$$

Satz 1.2.5 $(\mathbb{Q}_p, |\cdot|_p)$ ist (bis auf Isomorphie) die Vervollständigung von \mathbb{Q} bezüglich des p-adischen Betrags auf \mathbb{Q} ; \mathbb{Z}_p ist der topologische Abschluss von \mathbb{Z} in \mathbb{Q}_p .

Bemerkung: \mathbb{Z}_p lässt sich auch als inverser Limes definieren:

$$\mathbb{Z}_p := \varprojlim_r \mathbb{Z}/p^r \mathbb{Z} := \{(z_r)_{r \in \mathbb{N}} \mid \forall r \colon z_r \in \mathbb{Z}/p^r \mathbb{Z}, \pi_r(z_r) = z_{r-1}\},\$$

wobei $\pi_r \colon \mathbb{Z}/p^r\mathbb{Z} \to \mathbb{Z}/p^{r-1}\mathbb{Z}$ die kanonische Abbildung ist.

Korollar 1.2.6 Die Vervollständigungen von \mathbb{Q} bezüglich beliebigen Beträgen auf \mathbb{Q} sind: \mathbb{Q} selbst (bei trivialem Betrag); \mathbb{R} ; \mathbb{Q}_p für alle Primzahlen p.

Definition 1.2.7 Sei K ein Körper. Die Menge der **formalen Laurent-Reihen** über K ist definiert als die Menge der formalen Summen der Form

$$K((t)) := \{ \sum_{i > N} r_i t^i \mid N \in \mathbb{Z}, \forall i \colon r_i \in K \},$$

Die Summe und das Produkt von zwei solchen Reihen sind so definiert, wie man es bei Reihen erwartet. Der (t-adische) Betrag einer formalen Reihe $a = \sum_{i \geq N} r_i t^i \in K((t))$ mit $r_N \neq 0$ ist definiert durch $|a|_t := e^{-N}$. (Und: $|0|_t := 0$.) Die formalen Potenzreihen sind

$$K[[t]] := \{ \sum_{i \geq 0} r_i t^i \in \mathbb{Q}_p \mid \forall i \colon r_i \in K \}.$$

Satz 1.2.8 $(K((t)), |\cdot|_t)$ ist (bis auf Isomorphie) die Vervollständigung von K(t) bezüglich des t-adischen Betrags auf K(t); K[[t]] ist der topologische Abschluss von K[t] in K((t)).

1.3 Bewertete Körper

Definition 1.3.1 Eine angeordnete abelsche Gruppe ist eine abelsche Gruppe pe Γ mit Ordnungsrelation <, so dass für alle $a, a', b \in \Gamma$ gilt: $a < a' \Rightarrow a + b < a' + b$.

Beispiel 1.3.2 $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +) (\mathbb{R}_{>0}, \cdot).$

Beispiel 1.3.3 Sind Γ und Γ' angeordnete abelsche Gruppen, so ist auch $\Gamma \times \Gamma'$ mit der **lexikographischen Ordnung** eine angeordnete abelsche Gruppe: $(a,b) \geq 0 \iff a \geq 0$ oder $(a=0 \text{ und } b \geq 0)$.

Lemma 1.3.4 Angeordnete abelsche Gruppen sind torsionsfrei.

Definition 1.3.5 Sei K ein Körper. Eine **Bewertung** auf K ist eine Abbildung $v: K \to \Gamma \cup \{\infty\}$, wobei Γ eine angeordnete abelsche Gruppe ist, so dass gilt:

- $v(x) = \infty \iff x = 0$
- $\bullet \ v(xy) = v(x) + v(y)$
- $v(x+y) \ge \min\{v(x), v(y)\}.$

Ein Körper mit Bewertung heißt bewerteter Körper. Γ heißt Wertegruppe. Zwei Bewertungen $v \colon K \to \Gamma$, $v' \colon K \to \Gamma'$ heißen äquivalent wenn ein ordungserhaltender Gruppenisomorphismus $\phi \colon \Gamma \to \Gamma'$ existiert mit $v' = \phi \circ v$.

Beispiel 1.3.6 Sei R ein faktorieller Ring, $K = \operatorname{Quot}(R)$, und sei $p \in R$ prim. Wir definieren die p-adische Bewertung $v_p \colon K \to \mathbb{Z} \cup \{\infty\}$ wie folgt. $v_p(0) := \infty$. Und: Ist $x = p^r \cdot \frac{m}{n} \in K^\times$, für $m, n \in R$ nicht durch p teilbar und $r \in \mathbb{Z}$ beliebig, so setzen wir $v_p(x) := r$.

Lemma 1.3.7 Ist (K, v) ein bewerteter Körper mit $\Gamma \subset (\mathbb{R}, +)$, so wird durch $|x| := a^{-v(x)}$ ein Betrag auf K definiert, für beliebige reelle a > 1.

Lemma 1.3.8 Ein nicht-archimedischer Betrag $|\cdot|$ auf einem Körper K induziert eine Bewertung auf $K: v(x) := -\log(|x|)$; die Wertegruppe ist eine Untergruppe von $(\mathbb{R}, +)$.

Bemerkung 1.3.9 Sei (K, v) ein bewerteter Körper. Dann gilt für $x, y \in K$:

- (a) v(1) = 0; v(-x) = v(x); $v(\frac{1}{x}) = -v(x)$
- (b) Ist $v(x) \neq v(y)$, so ist $v(x+y) = \min\{v(x), v(y)\}.$

Definition 1.3.10 Sei (K, v) ein bewerteter Körper mit Wertegruppe Γ .

- (a) Ein offener Ball in K ist eine Teilmenge der Form $B_{>\gamma}(a) := \{x \in K \mid v(x-a) > \gamma\}$ für $a \in K$, $\gamma \in \Gamma$.
- (b) Ein abgeschlossener Ball in K ist eine Teilmenge der Form $B_{\geq \gamma}(a) := \{x \in K \mid v(x-a) \geq \gamma\}$ für $a \in K$, $\gamma \in \Gamma$.
- (c) Die **Bewertungs-Topologie** auf K ist die Topologie mit den offenen Bällen als Basis.

Bemerkung 1.3.11 Der Schnitt von zwei (offen/abgeschlossenen/beliebigen) Bällen ist wieder ein (offener/abgeschlossener/beliebiger) Ball.

Bemerkung 1.3.12 Abgeschlossene Bälle sind topologisch auch offen.

Bewertungsringe

Definition 1.4.1 Sei K ein Körper. Ein **Bewertungsring** (von K) ist ein Unterring $\mathcal{O}_K \subset K$, so dass für alle $a \in K$ gilt: $a \in \mathcal{O}_K$ oder $\frac{1}{a} \in \mathcal{O}_K$. Allgemeiner nennt man einen kommutativen Integritätsbereich Bewertungsring, wenn er ein Bewertungsring seines Quotientenkörpers ist.

Bemwerkung: Ist \mathcal{O}_K ein Bewertungsring von K, so ist $K = \text{Quot } \mathcal{O}_K$.

Lemma 1.4.2 Sei (K, v) ein bewerteter Körper.

- $\mathcal{O}_K := \{a \in K \mid v(a) \geq 0\}$ ist ein Bewertungsring mit Quotienten-Körper
- $\mathcal{O}_K^{\times} = \{a \in K \mid v(a) = 0\}.$ $\mathcal{M}_K := \{a \in K \mid v(a) > 0\}$ ist das einzige maximale Ideal von \mathcal{O}_K .

Definition 1.4.3 Den Ring \mathcal{O}_K aus Lemma 1.4.2 nennt man auch den **Bewer**tungsring von v. Den Quotient $\bar{K} := \mathcal{O}_K/\mathcal{M}_K$ nennt man den Restklassen**körper**. Die Abbildung $\mathcal{O}_K \to \bar{K}$ wird oft mit res bezeichnet (und manchmal auch als $a \mapsto \bar{a}$ geschrieben).

Satz 1.4.4 Sei K ein Körper. Lemma 1.4.2 induziert Bijektion

 $\{Bewertungen\ auf\ K\}/\ddot{A}guivalenz \quad \stackrel{1:1}{\longleftrightarrow} \quad \{Bewertetungsringe\ in\ K\}$

Beispiel 1.4.5 Seien $K \subset L$ angeordnete Körper, und sei $\mathcal{O}_L := \{a \in L \mid$ $\exists b \in K \colon -b \leq a \leq b$ der konvexe Abschluss von K in L. Dann ist \mathcal{O}_L ein Bewertungsring.

Definition 1.4.6 Sei K ein bewerteter Körper und \bar{K} sein Restklassenkörper. Man sagt, K hat Charakteristik (p,q), wenn char K=p und char K=q ist. Ist q = p, so sagt man auch, K hat $\mathbf{Aquicharakteristik}$ p. Ist $q \neq p$, so sagt man, K hat gemischte Charakteristik.

Bemerkung 1.4.7 Als Charakteristiken von bewerteten Körpern können auftreten: (0,0), (0,p) und (p,p), für Primzahlen p.

Fortsetzung von Bewertungen

Definition 1.5.1 Seien (K_1, v_1) und (K_2, v_2) bewertete Körper mit $K_1 \subset K_2$ und seien Γ_1 und Γ_2 die entsprechenden Wertegruppen. Wir nennen v_2 eine **Fortsetzung** von v_1 (auf K_2), wenn v_1 äquivalent ist zur Einschränkung $v_2|_{K_1}$.

Bemerkung 1.5.2 Nach Satz 1.4.4 ist das äquivalent zu: $\mathcal{O}_{K_1} = \mathcal{O}_{K_2} \cap K_1$. Außerdem gilt dann auch $\mathcal{O}_{K_1}^{\times} = \mathcal{O}_{K_2}^{\times} \cap K_1$ und $\mathcal{M}_{K_1} = \mathcal{M}_{K_2} \cap K_1$, und man erhält eine natürliche Einbettung $\bar{K}_1 \subset \bar{K}_2$.

Satz 1.5.3 Ist $K \subset L$ eine Körpererweiterung, so lässt sich jede Bewertung auf K zu einer Bewertung auf L fortsetzen.

Beispiel 1.5.4 Ist K ein bewerteter Körper, so erhält man auf K(X) eine Bewertung durch $v(\sum_{i=0}^n a_i x^i) := \min_i v(a_i)$ (und v(f(x)/g(x)) := v(f(x))) v(g(x))). Diese Bewertung heißt **Gauß-Bewertung**.

1.6 Newton-Polygone

Im folgenden sei K ein bewerteter Körper mit Wertegruppe Γ und $\Gamma_{\mathbb{Q}}$ die divisible Hülle von Γ .

Definition 1.6.1 Sei $f = \sum_{i=0}^{n} a_i X^i \in K[X]$ ein Polynom mit $a_n \neq 0$. Das **Newton-Polygon** von f ist die Abbildung $p: \{0, \ldots, n\} \to \Gamma_{\mathbb{Q}} \cup \{\infty\}$, die gegeben ist durch:

$$NP_f(\ell) = \min \left\{ v(a_\ell), \min_{i < \ell, j > \ell} \frac{(\ell - i)v(a_j) + (j - \ell)v(a_i)}{j - i}, \right\}$$

Satz 1.6.2 Sei $f = \sum_{i=0}^{n} a_i X^i \in K[X]$ ein Polynom vom Grad n. Wir setzen die Bewertung von K auf beliebige Weise auf K^{alg} fort und schreiben $f = a_n \cdot \prod_{i=1}^{n} (X - \alpha_i)$, mit $\alpha_i \in K^{\text{alg}}$ und $v(\alpha_1) \geq v(\alpha_2) \geq \cdots \geq v(\alpha_n)$. Dann ist $\operatorname{NP}_f(\ell) = v(a_n) + \sum_{i>\ell} v(\alpha_i)$ für $\ell = 0, \ldots, n$.

Korollar 1.6.3 *Ist* $f \in \mathcal{O}_K[X]$ *ein normiertes Polynom, so liegen alle Null-stellen von* f *in* \mathcal{O}_K .

Korollar 1.6.4 Sei $f \in \mathcal{O}_K[X]$ ein normiertes Polynom; wir setzen die Bewertung von K auf beliebige Weise auf K^{alg} fort und schreiben Γ^{alg} für die zugehörige Wertegruppe. Besitzt f genau k viele Nullstellen in K^{alg} mit Bewertung $\gamma \in \Gamma^{\mathrm{alg}}$, so ist $k\gamma \in \Gamma$. Insbesondere ist $\Gamma^{\mathrm{alg}} = \Gamma_{\mathbb{O}}$.

Satz 1.6.5 (Verallgemeinertes Eisensteinsches Irreduzibilitäts-Kriterium) Sei $f \in L[X]$ ein Polynom vom Grad n über einem Körper L. Wenn eine Bewertung auf L existiert, so dass $\operatorname{NP}_f(\ell) \notin \Gamma$ für $1 \leq \ell \leq n-1$ gilt, so ist f irreduzibel.

Satz 1.6.6 Sind $f, g \in K[X]$ Polynome vom Grad n und m und ist $h = f \cdot g$, so lässt sich NP_h wie folgt aus NP_f und NP_g bestimmen:

- $NP_h(m+n) = NP_f(n) + NP_g(m)$
- Die "Segmente" von NP_h sind genau die Segmente von NP_f und die Segmente von NP_g , so sortiert, dass NP_h konvex ist; also formal: Ist $\lambda_i = NP_f(i) NP_f(i-1)$ für $i = 1, \ldots, n$, und analog $\mu_i = NP_g(i) NP_g(i-1)$ und $\nu_i = NP_h(i) NP_h(i-1)$, so erhält man die Folge ν_1, \ldots, ν_{m+n} , indem man die Folge $\lambda_1, \ldots, \lambda_n, \mu_1, \ldots, \mu_m$ aufsteigend sortiert.

1.7 Henselsche Körper

Satz 1.7.1 (Hensels Lemma) Sei K ein vollständiger bewerteter Körper mit $\Gamma = \mathbb{Z}$ (vollständig bezüglich der zugehörigen Metrik). Seien $f \in \mathcal{O}_K[X]$, $a \in \mathcal{O}_K$ mit v(f(a)) > 0 und v(f'(a)) = 0. Dann existiert genau ein $b \in \mathcal{O}_K$ mit f(b) = 0 und v(b-a) > 0.

Bemerkung 1.7.2 Eine äquivalente Formulierung ist: Ist $f \in \mathcal{O}_K[X]$ und ist $\bar{a} \in \bar{K}$ eine einfache Nullstelle von $\operatorname{res}(f)$, so besitzt f genau eine Nullstelle in $\operatorname{res}^{-1}(\bar{a})$.

Satz 1.7.3 (Newtons Lemma) Sei K ein vollständiger bewerteter Körper mit $\Gamma = \mathbb{Z}$ (vollständig bezüglich der zugehörigen Metrik). Seien $f \in \mathcal{O}_K[X]$, $a \in \mathcal{O}_K$ mit v(f(a)) > 2v(f'(a)). Dann existiert genau ein $b \in \mathcal{O}_K$ mit f(b) = 0 und $v(b-a) \geq v(f(a)) - v(f'(a))$ (> v(f'(a))).

Definition 1.7.4 Ein bewerteter Körper K heißt **henselsch**, wenn gilt: Sind $f \in \mathcal{O}_K[X]$ und $a \in \mathcal{O}_K$ mit v(f(a)) > 0 und v(f'(a)) = 0, so existiert (mindestens) ein $a_0 \in \mathcal{O}_K$ mit $f(a_0) = 0$ und $v(a_0 - a) > 0$.

Beispiel 1.7.5 Nach Satz 1.7.1 sind vollständige bewertete Körper mit Wertegruppe \mathbb{Z} henselsch.

Beispiel 1.7.6 Algebraisch abgeschlossene bewertete Körper immer henselsch.

Bemerkung 1.7.7 Man kann zeigen: Ein bewerteter Körper K ist henselsch genau dann, wenn die Bewertung von K genau eine Fortsetzung auf den algebraischen Abschluss K^{alg} besitzt.

Bemerkung 1.7.8 Man kann zeigen: Zu jedem bewerteten Körper K gibt es einen kleinsten henselschen bewerteten Körper $K^h \subset K^{\mathrm{alg}}$, der K enthält. K^h ist (als bewerteter Körper) eindeutig bis auf Automorphismus über K und heißt henselsche Hülle von K.

Bemerkung 1.7.9 *Man kann zeigen: Ist K Körper mit Betrag und* \hat{K} *die Vervollständigung, so ist* $K^h = \hat{K} \cap K^{alg}$.

1.8 Anwendung auf diophantische Gleichungen

Konvention: Alle Ringe sind kommutativ und mit 1.

Notation 1.8.1 Sei $\underline{f} := (f_1, \dots, f_\ell) \in \mathbb{Z}[X_1, \dots, X_n]^\ell$ ein Tupel von Polynomen und sei R ein Ring. Dann schreiben wir

$$V_{\underline{f}}(R) := \{\underline{a} \in R^n \mid f_1(\underline{a}) = \dots = f_\ell(\underline{a}) = 0\}$$

für die Lösungen des Gleichungssystems "f = 0" in \mathbb{R}^n .

Bemerkung 1.8.2 Die Lösbarkeit von diophantischen Gleichungen ist unentscheidbar: Es gibt keinen Algorithmus, der ein Polynom $f \in \mathbb{Z}[X_1, \ldots, X_n]$ nimmt und entscheidet, ob $V_f(\mathbb{Z})$ nicht-leer ist.

Bemerkung 1.8.3 Ist $V_f(\mathbb{Z})$ nicht-leer, so ist auch $V_f(\mathbb{Z}/m\mathbb{Z})$ nicht-leer für alle $m \geq 1$.

Lemma 1.8.4 Sei $\underline{f} \in \mathbb{Z}[X_1, \ldots, X_n]^{\ell}$ und $m \geq 1$. Ist $m = \prod_i p_i^{r_i}$ die Primfaktorzerlegung von m, so induzieren die kanonischen Projektionen $\mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/p_i^{r_i}\mathbb{Z}$ eine Bijektion

$$V_{\underline{f}}(\mathbb{Z}/m\mathbb{Z}) \to \prod_i V_{\underline{f}}(\mathbb{Z}/p_i^{r_i}\mathbb{Z})$$

Bemerkung 1.8.5 Für jede Primzahl p und jedes $r \geq 0$ gilt: $\mathbb{Z}/p^r\mathbb{Z} \cong \mathbb{Z}_p/p^r\mathbb{Z}_p$.

Definition 1.8.6 Sei $\underline{f} \in \mathbb{Z}[X_1, \dots, X_n]^{\ell}$ und p prim. Die **Poincaré-Reihe** zu f ist die formale Potenzreihe

$$P_{\underline{f},p}(Z) := \sum_{r \in \mathbb{N}} N_r Z^r \in \mathbb{Q}[[Z]],$$

 $f\ddot{u}r\ N_r := \#V_f(\mathbb{Z}/p^r\mathbb{Z}).$

Satz 1.8.7 Sei $\underline{f} \in \mathbb{Z}[X_1, \dots, X_n]^{\ell}$ und p prim. Die Poincaré-Reihe $P_{\underline{f},p}(Z)$ ist eine rationale Funktion in Z, d. h. $P_{f,p}(Z) \in \mathbb{Q}(Z)$.

Beispiel 1.8.8 Ist f das Null-Polynom in n Variablen, so ist $P_{f,p}(Z) = \frac{1}{1-p^n Z}$.

Satz 1.8.9 Sei $\underline{f} \in \mathbb{Z}[X_1, \ldots, X_n]^{\ell}$. Dann existieren ein Polynom $h \in \mathbb{Z}[Z, P]$ und Ringformeln $\phi_0, \ldots, \phi_m, \phi'_0, \ldots, \phi'_m$, so dass für jede Primzahl p gilt:

$$P_{\underline{f},p}(Z) = \frac{\sum_{i=0}^{m} (\#\phi_i(\mathbb{F}_p) - \#\phi_i'(\mathbb{F}_p))Z^i}{h(Z,p)}.$$

2 Quantorenelimination in bewerteten Körpern

Im gesamten Kapitel ist K ein bewerteter Körper: Außerdem ist v die Bewertung, Γ (oder Γ_K) die Wertegruppe, \mathcal{O}_K der Bewertungsring, $\mathcal{M}_K \subset \mathcal{O}_K$ das maximale Ideal und \bar{K} der Restklassenkörper.

2.1 Leitterme

Sei K ein bewerteter Körper.

Bemerkung 2.1.1 $1 + \mathcal{M}_K$ ist eine Untergruppe der multiplikativen Gruppe K^{\times} .

Definition 2.1.2 Wir setzen $RV_K^{\times} := K^{\times}/(1 + \mathcal{M}_K)$ und $RV_K := RV_K^{\times} \cup \{0\}$ und schreiben $rv: K \to RV$ für die kanonische Abbildung $K^{\times} \to RV_K^{\times}$, fortgesetzt durch $0 \mapsto 0$. Für $a \in K$ nennt man rv(a) den **Leitterm** von a, und RV_K ist die **Leittermstruktur**. Für die Gruppe RV_K^{\times} verwenden wir multiplikative Notation. Außerdem setzen wir $0 \cdot \xi = 0$ für $\xi \in RV_K$.

Bemerkung 2.1.3 $F\ddot{u}r \, a, b \in K \ gilt \, rv(a) = rv(b) \ genau \ dann, \ wenn \ v(a-b) > v(a) \ ist \ oder \ a = b = 0.$

Beispiel 2.1.4 Im Fall K = k((t)) bilden die Elemente der Form $at^m \in K$ (für $a \in k$, $m \in \mathbb{Z}$) ein Repräsentantensystem von RV^{\times} ; es gilt $RV^{\times} \cong k^{\times} \times \Gamma$ (als Gruppen).

Bemerkung 2.1.5 Die Bewertung $v: K \to \Gamma_K \cup \{\infty\}$ faktorisiert über RV_K , d. h., es existiert ein Gruppenhomomorphismus $f: \mathrm{RV}_K \to \Gamma_K \cup \{\infty\}$, so dass $v = f \circ \mathrm{rv}$ gilt. Außerdem induziert rv einen injektiven Gruppenhomomorphismus $\bar{K}^\times \to \mathrm{RV}_K^\times$, dessen Bild genau der Kern von $f|_{\mathrm{RV}_K^\times}$ ist.

Notation 2.1.6 Die Abbildung $f: RV_K \to \Gamma_K \cup \{\infty\}$ aus Bemerkung 2.1.5 bezeichnen wir in Zukunft mit v_{RV} (oder vielleicht auch einfach mit v).

Notation 2.1.7 Seien $\xi_1, \ldots, \xi_n, \zeta \in \text{RV}$. Wenn $a_i \in K$ existieren mit $\operatorname{rv}(a_i) = \xi_i$ und $\operatorname{rv}(a_1 + \cdots + a_n) = \zeta$, so schreiben wir $\zeta \approx \xi_1 + \cdots + \xi_n$. Wenn genau ein ζ existiert mit $\zeta \approx \xi_1 + \cdots + \xi_n$, so sagen wir, $\xi_1 + \cdots + \xi_n$ ist **wohldefiniert**, und wir schreiben $\zeta = \xi_1 + \cdots + \xi_n$. Außerdem setzen wir $-\xi_1 := \operatorname{rv}(-1) \cdot \xi_1$.

Lemma 2.1.8 Seien $a_1, \ldots, a_n \in K$. Dann ist $\operatorname{rv}(a_1) + \cdots + \operatorname{rv}(a_n)$ wohlde-finiert genau dann, wenn $v(a_1 + \cdots + a_n) = \min\{v(a_1), \ldots, v(a_n)\}$ ist. Ist dies nicht der Fall, so gilt $\operatorname{rv}(a_1) + \cdots + \operatorname{rv}(a_n) \approx \zeta$ für alle $\zeta \in \operatorname{RV}$ mit $v(\zeta) > \min\{v(a_1), \ldots, v(a_n)\}$.

2.2 Quantorenelimination: Die Aussagen

Definition 2.2.1 Wir definieren L_{RV} als die zweisortige Sprache mit Sorten VF (für einen bewerteten Körper) und RV (für die zugehörige Leittermstruktur) und den folgenden Symbolen:

- die Ringsprache auf VF
- auf RV die Sprache der multiplikativen Gruppen und ein dreistelliges Relationssymbol für " $\xi_1 + \xi_2 \approx \xi_3$ ".
- ein Funktionssymbol rv: VF \rightarrow RV für die Abbildung rv: $K \rightarrow$ RV_K. Ist K ein bewerteter Körper, so werden wir die L_{RV} -Struktur (K, RV_K) oft auch einfach mit K bezeichnen.

Bemerkung 2.2.2 In $L := L_{ring} \cup \{V\}$, wobei V ein Relationssymbol für den Bewertungsgring eines bewerteten Körpers ist. Dann sind, für bewertete Körper K, die L-definierbaren Teilmengen von K^n die selben wie die L_{RV} -definierbaren Teilmengen. Sowohl in L^{eq} als auch in L_{RV}^{eq} existieren Sorten für RV_K , \bar{K} und $\Gamma \cup \{\infty\}$. Außerdem sind in beiden Sprachen definierbar: $\mathcal{O}_K \subset K$; $\mathcal{M}_K \subset K$; die Ring-Sprache auf \bar{K} ; die angeordnete-abelsche-Gruppen-Sprache auf Γ_K ; $v: K \to \Gamma \cup \{\infty\}$; $v: K \to RV_K$; $v_{RV}: RV_K \to \Gamma_K \cup \{\infty\}$; $res: \mathcal{O}_K \to \bar{K}$.

Bemerkung 2.2.3 Es existiert eine L_{RV} -Theorie, deren Modelle genau die (K, RV_K) sind, für bewertete Körper K.

Definition 2.2.4 Seien (p,q) eine mögliche Charakteristik von bewerteten Körpern (vgl. Bemerkung 1.4.7). Wir schreiben HEN für die Theorie der henselschen bewerteten Körper, HEN $_p \supset$ HEN für die Theorie der henselschen bewerteten Körper der Charakteristik p (bei beliebiger Restklassenkörper-Charakteristik) und HEN $_{p,q} \supset$ HEN $_p$ für die Theorie der henselschen bewerteten Körper der Charakteristik (p,q).

Bemerkung: Diese Theorien existieren. Es gilt: $\text{HEN}_0 = \text{HEN} \cup \{\text{char } K \neq p \mid p \text{ prim}\}\$ und $\text{HEN}_{0,0} = \text{HEN} \cup \{\text{char } \bar{K} \neq p \mid p \text{ prim}\}\$.

Definition 2.2.5 Eine RV-Expansion von L_{RV} ist eine Sprache $L \supset L_{RV}$, so dass $L \setminus L_{RV}$ "nur auf RV lebt", d. h. nur aus Konstanten in RV, Funktionssymbolen RV $^{\ell} \to RV$ und Relationssymbolen auf RV $^{\ell}$ besteht.

Sei L eine RV-Expansion von $L_{\rm RV}$. Wir nennen eine L-Formel VF-quantorenfrei (kurz: "VF-qf"), wenn sie keine Quantoren über Variablen der Sorte VF enthält.

Satz 2.2.6 Sei $L \supset L_{RV}$ eine RV-Expansion und sei $T \supset HEN_{0,0}$ eine L-Theorie. Dann ist jede L-Formel ist modulo T äquivalent zu einer VF-quantorenfreien L-Formel.

Korollar 2.2.7 Sei $L\supset L_{\rm RV}$ eine RV-Expansion und sei $T\supset {\rm HEN_0}$ eine L-Theorie. Dann existiert für jede L-Formel $\phi(\underline{x})$ ein $N_0>0$ und eine VF-quantorenfreie L-Formel $\psi(\underline{x})$, so dass gilt: Ist $K\models T$ ein Modell mit char $\bar{K}=0$ oder char $\bar{K}>N_0$, so ist $\phi(K)=\psi(K)$.

2.3 Polynome und rv

Definition 2.3.1 Sei $f = \sum_i a_i X^i \in K[X]$ und $b \in K$. Wir sagen, f hat eine **Kollision** bei b, wenn $v(f(b)) > \min_i v(a_i b^i)$ ist.

Bemerkung 2.3.2 f hat keine Kollision bei b genau dann, wenn $\sum_i \operatorname{rv}(a_i) \operatorname{rv}(b)^i$ wohldefiniert ist. In diesem Fall ist die Summe gleich $\operatorname{rv}(f(b))$.

Definition 2.3.3 Sei $f \in K[X]$ ein Polynom vom Grad n. Wir nennen ein $c \in K$ eine "Nullstelle einer Ableitung von f", wenn ein $0 \le \ell \le n$ existiert, so dass $f^{(\ell)}(c) = 0$ ist. (Hierbei bezeichnet $f^{(\ell)}$ die ℓ -te Ableitung von f.) Ist $\ell \ge 1$, so nennen wir c eine "Nullstelle einer echten Ableitung von f".

Lemma 2.3.4 Sei $f \in K[X]$ ein Polynom vom Grad n. Dann hat die Menge der $b \in K$, an denen f eine Kollision hat, die Form

$$\{b \in K \mid \exists c \in C \colon \operatorname{rv}(b) = \operatorname{rv}(c)\},\$$

wobei $C \subset K$ eine Teilmenge der Nullstellen der Ableitungen von f ist.

Definition 2.3.5 Sei $f \in K[X]$ und seien $b, c \in K$. Wir sagen, f hat eine um-c-Kollision bei b, wenn das um c verschobene Polynom g(X) := f(X+c) eine Kollision bei b-c hat.

Bemerkung 2.3.6 Schreiben wir $f(X+c) =: g(X) = \sum_i a_i X^i$, so hat f hat keine um-c-Kollision bei b genau dann, wenn $\operatorname{rv}(f(c)) = \sum_i \operatorname{rv}(a_i) \cdot \operatorname{rv}(b-c)^i$ gilt.

Satz 2.3.7 Seien $f \in K[X]$ und $b \in K$ gegeben, und sei c eine Nullstelle einer Ableitung von f, so dass v(b-c) maximal ist. Dann hat f keine um-c-Kollision bei b.

Lemma 2.3.8 Es existiert eine VF-qf-Formel η so dass $\eta(a_0, \ldots, a_n, \operatorname{rv}(b-c), c, \zeta)$ genau dann gilt (für $a_i, b, c \in K, \zeta \in \operatorname{RV}_K$), wenn das Polynom $f = \sum a_i X^i$ keine um-c-Kollision bei b hat und außerdem $\operatorname{rv}(f(b)) = \zeta$ gilt.

Satz 2.3.9 Sei $f \in K[X]$ ein Polynom. Wir nehmen an, dass f mit keiner seiner strikten Ableitungen eine gemeinsame Nullstelle hat. Sei außerdem $\zeta \in \mathrm{RV}^{\times}$ gegeben. Dann sind äquivalent:

- (a) Es existiert eine Nullstelle $b \in K$ von f mit $rv(b) = \zeta$.
- (b) Es existiert ein $b \in K$ mit $rv(b) = \zeta$, so dass f eine um-c-Kollision bei b hat sowohl für c = 0 als auch für jede Nullstelle c jeder echten Ableitung von f.

2.4 Beweis von Quantorenelimination

Lemma 2.4.1 Seien $f_i(x,\underline{z}) \in \mathbb{Z}[x,\underline{z}]$ für i=1,2, mit $a_{i,j} \in \mathbb{Z}[\underline{z}],$ wobei \underline{z} ein N-Tupel ist. Dann existieren endlich viele quantorenfreie L_{ring} -Formeln $\phi_{\ell}(\underline{z})$ und Polynome $g_{\ell}(x,\underline{z}), h_{i,\ell}(x,\underline{z}) \in \mathbb{Z}[x,\underline{u}]$ so dass für jeden Körper K gilt:

- (a) Die Mengen $\phi_{\ell}(K)$ bilden eine Partition von K^N .
- (b) Ist $\underline{c} \in \phi_{\ell}(K)$, so ist $g_{\ell}(x,\underline{c})$ der ggT von $f_1(x,\underline{c})$ und $f_2(x,\underline{c})$ (bis auf einen Faktor in K^{\times}), und es existieren $d_1, d_2 \in K^{\times}$ so dass $f_i(x,\underline{c}) = d_i \cdot h_{i,\ell}(x,\underline{c}) \cdot g_{\ell}(x,\underline{c})$ für i = 1, 2.

Wir arbeiten in einer RV-Expansion $L \supset L_{\rm RV}$ wie in Satz 2.2.6 und in $HEN_{0,0}$ (als L-Theorie aufgefasst). Im Folgenden ist x immer eine VF-Variable, \underline{z} ein Tupel von VF-Variablen und ζ ein Tupel von RV-Variablen.

Lemma 2.4.2 Satz 2.2.6 folgt aus: Für jede VF-qf-Formel $\phi(x, \underline{z}, \zeta)$ ist $\exists x \phi(x, \underline{z}, \zeta)$ zu einer VF-qf-Formel äquivalent.

Im Folgenden sind $m, n, r \in \mathbb{N}$, $a_{i,j}, b_j, c_i \in \mathbb{Z}[\underline{z}]$, $f_i = \sum_{j \leq m} a_{i,j} x^j, g =$ $\sum_{j\leq n} b_j x^j \in \mathbb{Z}[x,\underline{z}]$. Außerdem ist $\phi(x,\underline{z},\zeta)$ eine VF-qf-Formel. Für jede der folgenden Formen von Formeln $\psi(\underline{z},\zeta)$ führen wir eine Bezeichungen ein für die Behauptung, dass jede Formel dieser Form äquivalent zu einer VF-qf-Formel ist:

- (B) $\psi(\underline{z},\zeta) = \exists x : \phi(x,\underline{z},\zeta)$
- (P) $\psi(\underline{z},\underline{\zeta}) = \exists x : \bigwedge_{i \le r} \overline{\text{rv}}(f_i(x,\underline{z})) = \zeta_i$ (L) $\psi(\underline{z},\underline{\zeta}) = \exists x : \bigwedge_{i \le r} \overline{\text{rv}}(x + c_i(\underline{z})) = \zeta_i$

$$(EB)_n \ \psi(\underline{z},\underline{\zeta}) = b_n(\underline{z}) \neq 0 \land \exists x \colon \left(g(x,\underline{z}) = 0 \land \phi(x,\underline{z},\underline{\zeta})\right)$$

$$(\text{EP})_n \ \psi(\underline{z},\underline{\zeta}) = b_n(\underline{z}) \neq 0 \land \exists x : \left(g(x,\underline{z}) = 0 \land \bigwedge_{i \leq r} \text{rv}(f_i(x,\underline{z})) = \zeta_i \right)$$

$$(\text{EL})_n \ \psi(\underline{z},\underline{\zeta}) = b_n(\underline{z}) \neq 0 \land \exists x \colon \left(g(x,\underline{z}) = 0 \land \bigwedge_{i \leq r} \text{rv}(x + c_i(\underline{z})) = \zeta_i \right)$$

 $(B = beliebig, P = polynomial, \dot{L} = linear, E = endlich).$

Lemma 2.4.3 (a) (B) folgt aus (P), und $(EB)_n$ folgt aus $(EP)_n$.

- (b) Gilt (L) und $(EP)_n$ für alle n, so gilt (P).
- (c) (L) ist wahr.
- (d) $(EL)_0$ und $(EP)_0$ sind wahr.
- (e) Für $n \ge 1$: Aus $(EL)_n$ und $(EB)_{n'}$ für alle n' < n folgt $(EP)_n$
- (f) Für $n \ge 1$: Aus (L) und $(EB)_{n'}$ für alle n' < n folgt $(EL)_n$

2.5Der Satz von Ax-Kochen/Ershov und andere Folgerungen

Definition 2.5.1 Eine anguläre Komponente auf einem bewerteten Körper K ist ein Gruppenhomomorphismus ac: $K^{\times} \to \bar{K}^{\times}$, der auf \mathcal{O}_{K}^{\times} mit res übereinstimmt. Wir setzen außerdem ac(0) := 0.

Bemerkung 2.5.2 Sei ac: $K \to \overline{K}$ eine anguläre Komponente. Dann erhalten wir eine induzierte Abbildung $ac_{RV} \colon RV \to \bar{K} \ (d.\,h.\ ac(a) = ac_{RV}(rv(a)) \ f\ddot{u}r$ $a \in K$) und einen Gruppen-Isomorphismus $RV^{\times} \to \bar{K}^{\times} \times \Gamma, \xi \mapsto (ac_{RV}(\xi), v(\xi)).$

Satz 2.5.3 Sei K ein bewerteter Körper, aufgefasst als Struktur in einer beliebigen Sprache. Dann besitzt K eine elementare Erweiterung $K' \succ K$, auf der eine anguläre Komponente existiert.

Definition 2.5.4 Die Sprache von Denef-Pas L_{DP} ist die folgende drei-sortige Sprache: eine Sorte VF für einen bewerteten Körper; eine Sorte Γ_{∞} für die Wertegruppe mit ∞; eine Sorte VF für den Restklassenkörper; die Ringsprache auf VF; die Ringsprache auf \bar{VF} ; die Sprache $L_{oag} = \{0,+,-,<\}$ der angeordneten abeschen Gruppen auf Γ ; $v \colon VF \to \Gamma_{\infty}$; eine angulären Komponente ac: VF \rightarrow VF. Wir verwenden die Bezeichnungen HEN, HEN_p, HEN_{p,q} auch für die entsprechenden Theorien in $L_{\rm DP}$, wobei dann die Aussage hinzukommt, dass ac eine anguläre Komponente ist.

Satz 2.5.5 Sei $L \supset L_{\rm DP}$ eine $\bar{\rm VF}$ - Γ_{∞} -Expansion (d. h. durch Symbole, die nur auf $\bar{\rm VF}$ und Γ_{∞} leben) und sei $T \supset {\rm HEN}_{0,0}$ eine L-Theorie. Dann ist jede L-Formel ist modulo T äquivalent zu einer ${\rm VF}$ -quantorenfreien L-Formel.

Korollar 2.5.6 Sei \underline{x} ein Tupel von VF-Variablen, \underline{y} ein Tupel von VF-Variablen und $\underline{\lambda}$ ein Tupel von Γ_{∞} -Variablen. Jede L_{DP} -Formel $\phi(\underline{x},\underline{y},\underline{\lambda})$ ist äquivalent zu einer endlichen boolschen Kombination von Formeln der Formen $\psi((\mathrm{ac}(f_i(\underline{x}))_i,\underline{y})f\ddot{u}r\ L_{\mathrm{ring}}$ -Formen ψ und $\psi'((v(f_i(\underline{x}))_i,\underline{\lambda})f\ddot{u}r\ L_{\mathrm{oag}}$ -Formeln ψ' .

Definition 2.5.7 Sei L eine Sprache und S eine Sorte von L. Die auf S induzierte Sprache ist die Sprache L' bestehend aus einem Relationssymbol für jede Formel, die eine Teilmenge von S^n definiert. Jede L-Struktur \mathcal{M} liefert eine L'-Struktur mit Grundmenge $S^{\mathcal{M}}$; diese nennen wir die von L auf S induzierte Struktur.

Korollar 2.5.8 Sei $K \models \text{HEN}_{0,0}$, in der Sprache L_{DP} .

- (a) Die auf \bar{K} induzierte Struktur ist die $L_{\rm ring}$ -Struktur (bis auf Interdefinierbarkeit).
- (b) Die auf Γ_K induzierte Struktur ist die L_{oag} -Struktur (bis auf Interdefinierbarkeit).

Korollar 2.5.9 (Satz von Ax-Kochen/Ershov, Version 1) Sei L entweder L_{RV} oder L_{DP} . Sind K_1 und K_2 Modelle der L-Theorie $\text{HEN}_{0,0}$ mit $\bar{K}_1 \equiv_{L_{\text{ring}}} \bar{K}_2$ und $\Gamma_{K_1} \equiv_{L_{\text{oag}}} \Gamma_{K_2}$, so ist bereits $K_1 \equiv_L K_2$.

Korollar 2.5.10 (Satz von Ax-Kochen/Ershov, Version 2; Transferprinzip) Sei L entweder $L_{\rm RV}$ oder $L_{\rm DP}$, und sei ϕ eine L-Aussage. Dann existiert ein $N \in \mathbb{N}$, so dass für alle L-Strukturen $K_1, K_2 \models {\rm HEN}$ gilt: Ist $\bar{K}_1 \equiv_{L_{\rm ring}} \bar{K}_2$, $\Gamma_{K_1} \equiv_{L_{\rm oag}} \Gamma_{K_2}$, und ist char \bar{K}_1 entweder 0 oder größer as N, so habe

$$K_1 \models \phi \iff K_2 \models \phi.$$

Bemerkung 2.5.11 Korollare 2.5.9 und 2.5.10 gelten auch in \overline{VF} -Expansionen von Γ_{∞} -Expansionen von L_{DP} , wenn man $\overline{K}_1 \equiv \overline{K}_2$ und $\Gamma_{K_1} \equiv \Gamma_{K_2}$ für die entsprechenden induzierten Strukturen fordert.

2.6 Bessere Quantorenelimination in Spezialfällen

Definition 2.6.1 Wir schreiben DOAG für die Theorie der nicht-trivialen divisiblen angeordneten abelschen Gruppen in der Sprache L_{oag} .

Satz 2.6.2 Die Theorie DOAG hat Quantorenelimination und ist vollständig.

Satz 2.6.3 Die Theorie $ACVF_{0,0}$ der algebraisch abgeschlossenen nicht-trivial bewerteten Körper der Charakteristik (0,0) hat in der Sprache L_{DP} (vollständige) Quantoren-Elimination.

Definition 2.6.4 Die Sprache von Presburger ist $L_{\text{Pres}} = L_{\text{oag}} \cup \{1\} \cup \{\equiv_{\ell} | \ell \geq 1\}$, wobei \equiv_{ℓ} eine binäre Relation ist, die in \mathbb{Z} interpretiert wird als: $a \equiv_{\ell} b \iff a \equiv b \mod \ell$.

Satz 2.6.5 In der Sprache L_{Pres} hat \mathbb{Z} Quantorenelimination.

3 Rationalität von Poincaré-Reihen

3.1 Zerlegung in krumme Quader

Im folgenden ist K ein Modell von $\text{HEN}_{0,0}$ in einer RV-Expansion L von L_{RV} . Außerdem ist $A \subset K \cup \text{RV}$ immer eine Parametermenge.

Definition 3.1.1 Seien $\lambda_1, \ldots, \lambda_n \in \Gamma_K \cup \{\infty\}$. Ein **krummer Quader** mit Radien $\lambda_1, \ldots, \lambda_n$ ist eine definierbare Teilmenge $Q \subset K^n$ der folgenden Form:

- (a) Im Fall n = 1: Q ist ein offener Ball mit Radius λ_1 (falls $\lambda_1 < \infty$), oder ein Punkt (falls $\lambda_1 = \infty$).
- (b) Im Fall n > 1: Die Projektion $Q' := \pi(Q) \subset K^{n-1}$ auf die ersten n-1Koordinaten ist ein krummer Quader mit Radien $\lambda_1, \ldots, \lambda_{n-1}$, und für jedes $\underline{x} \in Q'$ ist die Faser $\{y \in K \mid (\underline{x}, y) \in Q\}$ ein krummer Quader mit Radius λ_n .

Satz 3.1.2 Sei $X \subset K^n \times RV^m$ A-definierbar. Dann existiert eine A-definierbare Abbildung $f : K^n \to RV^k$, deren nicht-leere Fasern krumme Quader sind, und so dass für $\underline{b}, \underline{b}' \in K^n$ gilt: Ist $f(\underline{b}) = f(\underline{b}')$ so sind auch die Fasern $X_{\underline{b}}$ und $X_{\underline{b}'}$ gleich. (Hierbei $X_{\underline{b}} = \{\underline{\xi} \in RV^m \mid (\underline{b}, \underline{\xi}) \in X\}$.)

Bemerkung 3.1.3 Der Satz gilt auch uniform in den Parametern und uniform in allen Modellen von $\text{HEN}_{0,0}$, d. h. die Formel, die f definiert hängt nur von der Formel, die X definiert, ab.

Lemma 3.1.4 Ist $C \subset K$ endlich und A-definierbar, so existiert eine A-definierbare Abbildung $f: K \to \mathrm{RV}^N$, so dass für $a, a' \in K$ gilt: f(a) = f(a') genau dann, wenn für alle $c \in C$ gilt: $\mathrm{rv}(a-c) = \mathrm{rv}(a'-c)$.

Bemerkung 3.1.5 Das Lemma gilt auch uniform in den Parametern und uniform in allen Modellen von $\mathrm{HEN}_{0,0}$.

3.2 Messen in \mathbb{Q}_p

Satz 3.2.1 Auf jeder lokal kompakten topologischen Gruppe existiert ein bis auf Skalierung eindeutiges links-invariantes Borel-Maß.

Definition 3.2.2 Das Maß aus Satz 3.2.1 heißt Haar-Maß.

Satz 3.2.3 \mathbb{Z}_p ist kompakt. Insbesondere ist $(\mathbb{Q}_p, +)$ eine lokal-kompakte topologische Gruppe.

Definition 3.2.4 Von nun an sei μ das Haar-Maß auf $(\mathbb{Q}_p, +)$, das so normiert ist, dass $\mu(\mathbb{Z}_p) = 1$ ist. Das Produktmaß auf \mathbb{Q}_p^n bezeichnen wir auch mit μ .

Lemma 3.2.5 Das Haarmaß eines Balls $B_{>\lambda}(a) = B_{\geq \lambda+1}(a) \subset \mathbb{Q}_p$ ist $p^{-\lambda-1}$.

Satz 3.2.6 L_{DP} -definierbare Teilmengen $X \subset \mathbb{Q}_p^n$ sind Borel-messbar. Genauer: Ist $f: \mathbb{Q}_p^n \to \text{RV}^N$ wie in Satz 3.1.2, so gilt: $\mu(X) = \sum_{\underline{\xi} \in f(X)} p^{-g(\underline{\xi})-n}$, wobei $g(\underline{\xi}) \in \mathbb{Z} \cup \{\infty\}$ die Summe der Radien $\lambda_1, \ldots, \lambda_n$ des krummen Quaders $f^{-1}(\underline{\xi})$ ist.

3.3 Rationalität von Presburger-Poincaré-Reihen

In diesem Abschnitt arbeiten wir in der Sprache L_{Pres} (vgl. Definition 2.6.4).

Konvention 3.3.1 Mit einer linearen Abbildung von \mathbb{Z}^n nach \mathbb{Z}^m meinen wir eine Abbildung der Form $f(\underline{x}) = A\underline{x} + \underline{b}$, für eine Matrix $A \in \mathbb{Z}^{n \times m}$ und $b \in \mathbb{Z}^m$.

Lemma 3.3.2 (Presbuger-Zellzerlegung) Jede definierbare Teilmenge von \mathbb{Z}^n lässt sich als disjunkte Vereinigung von endlich vielen Mengen der folgenden Formen schreiben:

$$\{(\underline{x}, y) \in X \times \mathbb{Z} \mid f(\underline{x}) \le ry < g(\underline{x}), y \equiv_{\ell} c\},\$$

 $f\ddot{u}rX \subset \mathbb{Z}^{n-1}$ definierbar, f und g linear oder gleich $\pm \infty$, ℓ , $r \geq 1$ und $0 \leq c < \ell$.

Satz 3.3.3 (Rektilinearisierung) Jede definierbare Teilmenge von \mathbb{Z}^n lässt sich als disjunkte Vereinigung von endlich vielen Mengen der Form $f_i(\mathbb{N}^k)$ schreiben, wobei $f_i \colon \mathbb{Z}^k \to \mathbb{Z}^n$ eine injektive lineare Abbildung ist.

Definition 3.3.4 Sei $X \subset \mathbb{N}^n$ eine beliebige Teilmenge. Die **Poincaré-Reihe** zu X ist die formale Potenzreihe $P_X(Z_1,\ldots,Z_n) := \sum_{\underline{r} \in X} \underline{Z^r} \in \mathbb{Z}[[Z_1,\ldots,Z_n]].$ Hierbei verwenden wir Multiindex-Notation: $\underline{Z^r} = Z_1^{r_1} \cdots Z_n^{r_n}$

Satz 3.3.5 Ist $X \subset \mathbb{N}^n$ definierbar, so ist die Poincaré-Reihe P_X eine rationale Funktion; genauer: $P_X = g(\underline{Z})/h(\underline{Z})$ für Polynome $g, h \in \mathbb{Z}[\underline{Z}]$, wobei h ein Produkt von Polynomen der Form $1 - \underline{Z}^{\underline{a}}$ ist, für Tupel $\underline{a} \in \mathbb{N}^n \setminus \{0\}$.

3.4 Rationalität von $L_{\rm DP}$ -Poincaré-Reihen

Definition 3.4.1 Sei $X\subset \mathbb{Q}_p^n\times \mathbb{N}^m$ so, dass für jedes $\underline{r}\in \mathbb{N}^m$ die Faser $X_{\underline{r}}$ messbar ist und endliches Maß hat. Dann definieren wir die zugehörige **Poincaré-Reihe** als

$$P_X(\underline{Z}) := \sum_{r \in \mathbb{N}^m} \mu(X_{\underline{r}}) \underline{Z}^{\underline{r}}.$$

Satz 3.4.2 Sei $\phi(\underline{x}, \underline{\lambda})$ eine L_{DP} -Formel, wobei \underline{x} ein n-Tupel von VF-Variablen ist und $\underline{\lambda}$ ein m-Tupel von Γ_{∞} -Variablen. Wir nehmen an, dass für jede Primzahl p gilt: $\phi(\mathbb{Q}_p) \subset \mathbb{Q}_p^n \times \mathbb{N}^m$, und für jedes Tupel $\underline{r} \in \mathbb{N}^m$ hat die Menge $\phi(\mathbb{Q}_p, \underline{r})$ endliches Ma β . Dann existiert ein M > 0, ein Polynom $h \in \mathbb{Z}[\underline{Z}, P]$ und endlich viele Ringformeln $\psi_{\underline{\ell}}$, $\psi'_{\underline{\ell}}$ ($\underline{\ell} \in I \subset \mathbb{N}^m$), so dass für jede Primzahl $p \geq M$ gilt:

$$P_{\phi(\mathbb{Q}_p)}(\underline{Z}) = \frac{\sum_{\underline{\ell} \in I} (\#\psi_{\underline{\ell}}(\mathbb{F}_p) - \#\psi'_{\underline{\ell}}(\mathbb{F}_p))\underline{Z}^{\underline{\ell}}}{h(Z,p)}.$$

Lemma 3.4.3 Ist $P \in \mathbb{Q}[[\underline{Y}, \underline{Z}]]$ eine rationale Funktion und ist $\underline{a} \in \mathbb{C}^n$ so, dass P absolut konvergiert, wenn man \underline{a} für \underline{Y} einsetzt (so dass man $P(\underline{a}, \underline{Z}) \in \mathbb{Q}[[\underline{Z}]]$ erhält), so ist auch $P(\underline{a}, \underline{Z})$ eine rationale Funktion.

Index

DV E	1 1 1 11.11 7		
RV-Expansion, 9	henselsche Hülle, 7		
VF=quantorenfrei, 9	induzierte Sprache, 12		
p-adische Bewertung, 4	induzierte Sprache, 12 induzierte Struktur, 12		
p-adische Zahlen, 3	Irreduzibilitäts=Kriterium		
p-adischer Betrag, 2			
VF-qf, 9	verallgemeinertes Eisensteinsches,		
1 1 1 6	6		
abelsche Gruppe	Kollision, 10		
angeordnete, 4	Kollision um, 10		
abgeschlossener Ball, 4	krummer Quader, 13		
ACVF, 12	Körper		
angeordnete abelsche Gruppe, 4	bewerteter, 4		
anguläre Komponente, 11	bewerteter, 4		
archimedisch, 2	Leitterm, 8		
Ax-Kochen/Ershov	Leittermstruktur, 8		
Satz von, 12	Lemma		
D 4 0	von Hensel, 6		
Betrag, 2	von Newton, 6		
p-adischer, 2	lexikographische Ordnung, 4		
archimedischer, 2	rexikographische Ordnung, 4		
trivialer, 2	Newton-Polygon, 6		
bewerteter Körper, 4	Newtons Lemma, 6		
Bewertung, 4	nicht-archimedisch, 2		
Bewertungs-Topologie, 4	Nullstelle einer Ableitung, 10		
Bewertungsring, 5	Nullstelle einer echten Ableitung, 10		
Bewertungsring von v , 5	Transcence emer content reportang, 10		
Charakteristik, 5	offener Ball, 4		
	D: (D:1 7 14		
DOAG, 12	Poincaré-Reihe, 7, 14		
Dreiecksungleichung, 2	Presburger		
ultrametrische, 2	Sprache, 12		
Eisensteinsches Irreduzibilitäts=Kriterium Restklassenkörper, 5			
formale Laurent-Reihen, 3	satz		
formale Potenzreihen, 3	Hensels Lemma, 6		
Fortsetzung, 5	Newtons Lemma, 6		
ganze p -adische Zahlen, 3	Satz von Ax-Kochen/Ershov, 12		
Gauß-Bewertung, 5	Satz von Ostrowski, 2		
	Sprache von Denef-Pas, 11		
gemischte Charakteristik, 5	Sprache von Presburger, 12		
Gruppe	· 0 /		
angeordnete abelsche, 4	Transferprinzip, 12		
Haar-Maß, 13	trivialer Betrag, 2		
Hansals Lamma 6			
	ultrametrische Dreiecksungleichung, 2		

```
um-c-Kollision, 10

Verallgemeinertes Eisensteinsches Irreduzibilitäts=Kriterium, 6

Wertegruppe, 4
wohldefiniert
Summe in RV, 8

Äquicharakteristik, 5
äquivalente Bewertungen, 4
```