

Einführung in die Modelltheorie Anwesenheitsaufgaben vom 14.11.2022

Prof. I. Halupczok

Aufgabe 1:

Wenn \mathcal{U} ein Hauptultrafilter auf \mathbb{N} ist, was ist dann der Ultralimes $\lim_{\mathcal{U}} a_i$ (wobei $a_i \in [0,1]$ für $i \in \mathbb{N}$)?

Aufgabe 2:

Zeigen Sie, dass ein freier Ultrafilter auf N existiert, der die Menge 2N enthält.

Tipp: Verwenden Sie Satz 2.1.4.

Aufgabe 3:

Sei $I = \mathbb{N}$, sei \mathcal{U} ein freier Ultrafilter auf I, sei $M_i = \mathbb{Z}$ für alle $i \in I$ und sei $M := \prod_i M_i / \mathcal{U}$.

- (a) Zeigen Sie, dass man auf M eine Ordnungsrelation erhält, die folgendermaßen definiert ist: $a_{\mathcal{U}} \leq b_{\mathcal{U}}$ genau dann wenn $\{i \mid a_i \leq b_i\} \in \mathcal{U}$.
- (b) Zeigen Sie, dass in M ein Element ω existiert, das größer als k ist für alle $k \in \mathbb{Z}$.
- (c) Finden Sie ein noch größeres Element ω' und ein noch "viel" größeres Element ω'' und ein noch "sehr sehr viel" größeres Element ω''' .

Aufgabe 4:

Sei $A \subseteq \mathbb{N}$ eine Teilmenge. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- (a) A ist unendlich.
- (b) A^* ist unendlich.
- (c) $A^* \setminus A$ ist nicht leer.
- (d) $A^* \setminus \mathbb{N}$ ist nicht leer.
- (e) A^* enthält mindestens ein Element, das größer als jede natürliche Zahl ist.
- (f) Zu jedem $n \in \mathbb{N}^*$ existiert ein $a \in A^*$ mit a > n.

Anmerkung/Hinweis: Manche Implikationen sind fast trivial; da reicht eine ganz kurze Begründung. Bei anderen Implikationen muss man für eine geeignete L-Aussage ϕ verwenden, dass $\mathbb{N} \models \phi$ genau dann $\mathbb{N}^* \models \phi$ gilt. In diesen Fällen sollten Sie vor allem die Aussage ϕ präzise angeben.