Modelltheorie II – Blatt 10

Abgabe am 20.6.2024 in der Vorlesung oder im Ilias bis 10:30

Bitte geben Sie an, welche (Teil-)Aufgaben Sie gelöst haben. (Sie können auch angeben, dass Sie manche Aufgaben partiell gelöst haben.)

Aufgabe 1 (2+1 Punkte):

Sei K ein Modell von $\text{HEN}_{0,0}$ als L_{DP} -Struktur. Zeigen Sie:

- (a) Jede definierbare Teilmenge $X \subseteq \bar{K}^n \times \Gamma^m$ lässt sich als disjunkte Vereinigung von endlich vielen Mengen der Form $Y_i \times Z_i$ schreiben, für $Y_i \subseteq \bar{K}^n$ und $Z_i \subseteq \Gamma^m$, wobei die X_i und Y_i mit den selben Parametern definierbar sind wie X.
- (b) Definierbare Abbildungen von \bar{K}^n nach Γ^m und von Γ^m nach \bar{K}^n nehmen nur endlich viele Werte an.

Anmerkung: Wenn (a) gilt, sagt man, dass die Sorten RF und VG orthogonal zueinander sind.

Aufgabe 2 (3 Punkte):

In der Vorlesung wurden mit Hilfe von Quantorenelimination zwei verschiedene Versionen vom Satz von Ax-Kochen/Ershov gezeigt. Zeigen Sie, dass die zweite Version (Korollar 2.5.6) auch direkt aus der ersten (Korollar 2.5.5) folgt.

Hinweis: Wenn kein N wie in 2.5.6 existert, existieren Gegenbeispiel- K_1 - K_2 mit beliebig großer Restklassencharakteristik. Dann können Sie z. B. geeignete Ultraprodukte betrachen.

Aufgabe 3 (2 Punkte):

In dieser Aufgabe wollen wir uns überlegen, wie man Bälle in K^n definieren "sollte". Um eine Intuition zu bekommen, betrachten wir eine Ultrapotenz \mathbb{R}^* von \mathbb{R} , mit der Bewertung aus Beispiel 1.4.8. Eine naheliegende Definition des abgeschlossenen Balls um 0 mit Radius $\lambda \in \Gamma$ wäre

$$B_{\geq \lambda}(0) := \{\underline{a} \in (\mathbb{R}^*)^n \mid v(\sqrt{a_1^2 + \dots + a_n^2}) \geq \lambda\}.$$

Zeigen Sie, dass dieses $B_{\geq \lambda}(0)$ bereits ein Würfel ist: Es gilt $B_{\geq \lambda}(0) = \{\underline{a} \in (\mathbb{R}^*)^n \mid \min_i v(a_i) \geq \lambda\} = B_1 \times \cdots \times B_1$ für $B_1 = \{b \in K \mid v(b) \geq \lambda\}$.

(Dies ist die Aufgabe zur Fußball-EM: "Das Runde ist das Eckige.")

Dies erklärt, dass man in beliebigen bewerteten Körper K die folgenden Definitionen verwendet: Man definiert $v \colon K^n \to \Gamma \cup \{\infty\}$ durch $v(\underline{a}) := \min_i v(a_i)$. Ein Ball in K^n ist dann $B_{\geq \lambda}(\underline{a}) := \{\underline{b} \in K^n \mid v(\underline{b} - \underline{a}) \geq \lambda\}$ (für $\underline{a} \in K^n$ und $\lambda \in \Gamma$).

Aufgabe 4 (1+2+1+4 Punkte):

Sei $K \models \text{HEN}_{0,0}$. In (c) und (d) verwenden wir die Definition von v und Bällen in K^n von Ende von Aufgabe 3.

- (a) Zeigen Sie, dass ein Körper k und eine angeordnete abelsche Gruppe Γ existieren, so dass K elementar äquivalent zum Hahnkörper $k((t^{\Gamma}))$ ist (der auf Blatt 6 definiert wurde und nach Blatt 7 henselsch ist).
- (b) Zeigen Sie, dass K definierbar sphärisch vollständig sind, d. h. ist $\phi(x, \underline{y})$ eine Formel, die für jedes $\underline{b} \in K^n$ einen abgeschlossenen Ball $\phi(K, \underline{b}) \subseteq K$ definiert und bilden diese Bälle eine Kette, so ist der Schnitt all dieser Bälle nicht leer.

Hinweis: Auf Blatt 7 wurde noch etwas nützliches über Hahnkörper bewiesen.

- (c) Zeigen Sie, dass (b) auch für abgeschlossene Bälle in K^n funktioniert.
- (d) Sei weiterhin $K \models \text{HEN}_{0,0}$. Zeigen Sie, dass darin der folgende "definierbare Banachsche Fixpunktsatz" gilt: Sei $f \colon K^n \to K^n$ eine definierbare Abbildung, die kontrahierend im folgenden Sinne ist: Für alle $\underline{a}, \underline{b} \in K^n$ gilt $v(f(\underline{a}) f(\underline{b}) > v(\underline{a} \underline{b})$. Dann hat f genau einen Fixpunkt. Hinweis: Zeigen Sie, dass für jedes $\lambda \in \Gamma$ die Menge $B_{\lambda} := \{\underline{a} \in K^n \mid v(f(\underline{a}) \underline{a}) \geq \lambda\}$ entweder leer ist oder ein abgeschlossener Ball. Gehen Sie dann ähnlich vor wie in Aufgabe 4 (b) von Blatt 7.

Vorlesungswebseite: http://reh.math.uni-duesseldorf.de/~internet/MT2-V-S24/