Name

Matr-Nr.

Anwendungen der Modelltheorie Blatt 11

Abgabe am 20.6.2019 in der Vorlesung

_ 1	2	3	$\mid 4 \mid$	Σ

Bitte drucken Sie diese Seite aus und verwenden Sie sie als Deckblatt für Ihre Lösungen.

Wie üblich sind alle Antworten zu begründen/beweisen.

Aufgabe 1 (2+2+2+1 Punkte):

Sei T eine Theorie (vollständig, mit unendlichen Modellen).

Für Ordinalzahlen λ setzen wir $S_{\lambda} := \text{Abb}(\lambda, \{0, 1\}), \ S_{<\lambda} := \bigcup_{\beta < \lambda} S_{\beta} \text{ und } S_{\leq \lambda} := \bigcup_{\beta \leq \lambda} S_{\beta}.$ Ist $s \in S_{\lambda}$ und $\beta < \lambda$, so ist $s \mid_{\beta}$ die Einschränkung von s auf $\{\alpha \in \text{On } | \alpha < \beta\}.$

Sei $\lambda \in$ On unendlich. Wir sagen, dass eine Formel $\phi(\underline{x},\underline{y})$ die λ -Baumeigenschaft hat, wenn ein Modell $M \models T$ existiert und Elemente $\underline{a}_s \in M^n$ für $s \in S_{\leq \lambda}$, so dass für jedes $s \in S_{\lambda}$ und jedes $n \in \mathbb{N}$ gilt: $M \models \phi(\underline{a}_s,\underline{a}_{s|_n})$ genau dann, wenn s(n) = 1 ist.

- (a) Geben Sie eine Ordnungsrelation < auf $S_{\leq \omega}$ an, so dass die obige Bedingung $M \models \phi(\underline{a}_s, \underline{a}_{s|n}) \iff s(n) = 1$ " erfüllt ist, wenn für alle $s, s' \in S_{\leq \omega}$ gilt: $\phi(\underline{a}_s, \underline{a}_{s'}) \iff s < s'$.
- (b) Zeigen Sie: Ist $\phi(\underline{x},\underline{y})$ eine Formel, die von Satz 5.9.6 (c) verboten wird, so hat $\phi(\underline{x},\underline{y})$ die ω -Baumeigenschaft. Hinweis: Verwenden Sie (a) und ein Kompaktheitsargument aus dem Beweis von Satz 5.9.6 (a) \Rightarrow (c).
- (c) Zeigen Sie: Hat $\phi(\underline{x}, \underline{y})$ die ω -Baumeigenschaft, so hat ϕ für jede Ordinalzahl $\lambda \geq \omega$ die Baumeigenschaft. Hinweis: Verwenden Sie wieder so ein Kompaktheitsargument.
- (d) Zeigen Sie: Ist λ eine unendliche Ordinalzahl und κ eine unendliche Kardinalzahl, so dass $|S_{<\lambda}| \le \kappa < |S_{\lambda}|$ gilt und existiert eine Formel, die die λ -Baumeigenschaft hat, so ist T nicht κ -stabil.
- (e) Zeigen Sie: T ist stabil genau dann, wenn keine Formel mit der ω -Baumeigenschaft existiert. Hinweis: Kombinieren Sie (b), (c) und (d); begründen Sie, dass zu jedem κ ein λ wie in (d) existiert.

Aufgabe 2 (2+1 Punkte):

Sei $K \models ACF$ und $k \subset K$ ein Unterkörper.

In dieser Aufgabe sollen ein paar Details aus dem Beweis von Bemerkung 5.10.2 ausführlicher gemacht werden: Zeigen Sie:

- (a) Sind $I_1, I_2 \subset k[\underline{x}]$ Ideale und ist $I \subset k[\underline{x}]$ das Ideal, das erzeugt wird von allen Produkten $f_1 \cdot f_2$ mit $f_i \in I_i$, so ist $V(I) = V(I_1) \cup V(I_2)$.
- (b) Für beliebige Mengen $Y \subset K^n$ ist V(I(Y)) der topologische Abschluss von Y bezüglich der Zariski-Topologie (über k).

Aufgabe 3 (2 Punkte):

Sei weiterhin $K \models ACF$ und $k \subset K$ ein Unterkörper.

Sei außerdem $B \subset k[\underline{x}]$ eine beliebige Menge von Polynomen.

- (a) Zeigen Sie: I(V(B)) ist ein Ideal, das B enthält.
- (b) Geben Sie ein Polynom $f \in k[x]$ an, so dass $I(V(\{f\}))$ echt größer ist als das von f erzeugte Ideal.

Aufgabe 4 (2 Punkte):

Laut Satz 5.10.6 existiert in k[x] keine unendliche aufsteigende Kette von Idealen. Zeigen Sie (anhand von Beispielen):

- (a) Es existieren unendliche absteigende Ketten von Idealen.
- (b) Es existieren beliebig lange endliche aufsteigende Ketten von Idealen.