		Einführung in die Logik/	1	2	3	4	5	\sum
Name		Modelltheorie – Blatt 10						
		Abgabe am $10.1.2019$ in der Vorlesung						
Matr-Nr.	Gruppe							

Bitte drucken Sie diese Seite aus und verwenden Sie sie als Deckblatt für Ihre Lösungen.

Wie üblich sind alle Antworten zu begründen/beweisen.

Aufgabe 1 (2+2+1 Punkte):

Sei V_{α} wie in Satz 3.8.6 definiert (für $\alpha \in \text{On}$). Wir schreiben V für die Klasse $V = \bigcup_{\alpha \in \text{On}} V_{\alpha}$. (" $x \in V$ " bedeutet also: " $\exists \alpha : \alpha$ ist Ordinalzahl $\land x \in V_{\alpha}$ ") Ziel dieser Aufgabe ist es zu zeigen, dass V die Klasse aller Mengen ist. Wir nehmen also an, x sei eine Menge, die nicht in V liegt.

Zeigen Sie, dass dann folgendes gilt:

- (a) Es existiert ein $y \in x$ mit $y \notin V$. Hinweis: Zeigen Sie: Aus $x \subset V$ folgt, dass es schon ein α gibt mit $x \subset V_{\alpha}$. Hinweis zum Hinweis: Das Supremum einer Menge von Ordinalzahlen existiert immer.
- (b) Es existiert eine Funktion f auf ω , die folgende Eigenschaften hat: $f(n) \notin V$ für alle $n \in \omega$; f(0) = x; $f(n+1) \in f(n)$ für alle $n \in \omega$.
- (c) Führen Sie dies zum Widerspruch, indem Sie das Fundierungsaxiom auf im f anwenden.

Aufgabe 2 (2 Punkte):

Im Beweis von Satz 3.8.6 wurde in der Vorlesung ein Schritt ausgelassen:

Gegeben war ein stark unerreichbare Kardinalzahl κ und eine Limes-Ordinalzahl $\lambda < \kappa$. Wir hatten (induktiv) angenommen, dass wir für alle $\beta < \lambda$ bereits wissen: $|V_{\beta}| < \kappa$. Zu zeigen war dann: $|V_{\lambda}| < \kappa$.

Führen Sie diesen Beweisschritt aus.

Aufgabe 3 (2 Punkte):

Seien $\mathcal{M} \subset \mathcal{N}$ L-Strukturen.

(a) Zeigen Sie: \mathcal{M} ist eine elementare Unterstruktur von \mathcal{N} genau dann, wenn jede L-Formel $\phi(x)$ gilt:

$$\{\underline{a} \in M^n \mid \mathcal{M} \models \phi(\underline{a})\} = \{\underline{a} \in M^n \mid \mathcal{N} \models \phi(\underline{a})\}. \tag{+}$$

(b) Geben Sie Beispiele an, die zeigen: Ist $\mathcal{M} \not\prec \mathcal{N}$, so muss bei (+) keine der beiden Inklusionen gelten.

Aufgabe 4 (1+2 Punkte):

Zeigen Sie:

- (a) Sind $\mathcal{M} \subset \mathcal{M}' \subset \mathcal{M}''$ L-Strukturen mit $\mathcal{M} \prec \mathcal{M}'$ und $\mathcal{M}' \prec \mathcal{M}''$, so gilt auch $\mathcal{M} \prec \mathcal{M}''$
- (b) Ist I eine beliebige Indexmenge und sind \mathcal{M}_i (für $i \in I$) L-Strukturen, die eine Kette bezüglich elementarer Einbettung bilden (also $\mathcal{M}_i \prec \mathcal{M}_j$ oder $\mathcal{M}_j \prec \mathcal{M}_i$ für alle $i, j \in I$), so ist die Vereinigung $\mathcal{M} := \bigcup_{i \in I} \mathcal{M}_i$ eine elementare Erweiterung von \mathcal{M}_i für alle $i \in I$.

Aufgabe 5 (2+2 Punkte):

- (a) Sei L eine endliche oder abzählbare Sprache und sei T eine konsistente L-Theorie, die keine endlichen Modelle besitzt. Zeigen Sie, dass dann die folgenden Aussagen äquivalent sind:
 - (i) T ist vollständig.
 - (ii) Sind \mathcal{M} und \mathcal{M}' zwei abzählbare Modelle von T (d. h. mit $|M| = |M'| = \aleph_0$), so ist $\mathcal{M} \equiv \mathcal{M}'$. Hinweis: Für eine Richtung ist der Satz von Löwenheim-Skolem nützlich.
- (b) Sei nun L die leere Sprache, und sei T_{∞} die L-Theorie, die besagt, dass die Struktur unendlich ist. Zeigen Sie, dass T_{∞} vollständig ist.

Hinweis: Benutzen Sie (a).