Name	 	 	

Einführung in die Logik/ Modelltheorie – Blatt 4 Abgabe am 15.11.2018 in der Vorlesung

_ 1	2	3	$\mid 4 \mid$	\sum

Matr-Nr. Gruppe

Bitte drucken Sie diese Seite aus und verwenden Sie sie als Deckblatt für Ihre Lösungen.

Wie üblich sind alle Antworten zu begründen/beweisen.

Aufgabe 1 (2 Punkte):

In den folgenden Formeln wurden einige abkürzende Notationen aus der Mengenlehre verwendet. Geben Sie die L_{Me} Formel, an, die damit wirklich gemeint ist; Abkürzungen aus Kapitel 1 der Vorlesungen dürfen aber verwendet werden.

- (a) $\phi_1(y,z) = \forall x \subset y \colon x \not\in z$
- (b) $\phi_2(x, y, z) = \{\{u\} \mid u \in x\} \doteq \{w \mid w \cap y \in z\}$

(Anmerkung: Das, was bei (b) steht, sind möglicherweise keine Mengen, sondern Klassen. Trotzdem lässt sich da, was da steht, als L_{Me} -Formel ausdrücken.)

Aufgabe 2 (3 Punkte):

Um innerhalb von ZFC mit Relationen arbeiten zu können, fassen wir – wie schon am Anfang der Vorlesung – zweistellige Relationen auf einer Menge x als Teilmengen von $x \times x$ auf. (Die Klasse aller zweistelligen Relationen auf x ist also einfach $\mathcal{P}(x \times x)$, was nach dem Potenzmengenaxiom und Lemma 3.1.18 eine Menge ist.)

Zeigen Sie innerhalb von ZFC:

- (a) Ist x eine Menge, so ist die Klasse aller Äquivalenzrelationen auf x eine Menge.
- (b) Ist x eine Menge, \sim eine Äquivalenzrelation auf x und $y \in x$, so ist die Äquivalenzklasse von y eine Menge.
- (c) Ist x eine Menge und \sim eine Äquivalenzrelation auf x, so ist die Klasse x/\sim aller Äquivalenzklassen eine Menge.

Aufgabe 3 (4 Punkte):

Um innerhalb von ZFC mit Funktionen arbeiten zu können, identifizieren wir eine Funktion f von x nach y (wobei x und y Mengen sind) mit ihrem Graph $\{(u, f(u)) \in x \times y\}$. Formal definieren wir also: Eine Funktion von einer Menge x in eine Menge y ist eine Teilmenge f von $x \times y$, so dass für jedes $u \in x$ genau ein $v \in y$ existiert mit $(u, v) \in f$. (Obwohl wir f formal als Menge definieren, verwenden wir noch die üblichen Notationen wie z. B. f(a) für $a \in x$.)

Zeigen Sie in ZFC, für Mengen x und y:

- (a) Die Klasse Abb(x, y) aller Funktionen von x nach y ist eine Menge.
- (b) Sind $x' \subset x$ und $y' \subset y$ Mengen, so sind auch die Bildmenge f(x') und die Urbildmenge $f^{-1}(y')$ tatsächlich Mengen.
- (c) $id_x \in Abb(x, x)$.
- (d) Ist z eine weitere Menge und sind $f \in Abb(x, y)$ und $g \in Abb(y, z)$, so ist $g \circ f$ auch eine Menge (und damit ein Element von Abb(x, z)).

Aufgabe 4 (2+3+1+1) Punkte):

(In dieser Aufgabe arbeiten wir außerhalb von ZFC.) Sei $\mathcal{P}_0(\mathbb{N})$ die Menge aller endlichen Teilmengen von \mathbb{N} .

- (a) Zeigen Sie: Die Abbildung $\beta_{(a)}: \mathcal{P}_0(\mathbb{N}) \to \mathbb{N}, \{a_1, \dots, a_k\} \mapsto 2^{a_1} + \dots + 2^{a_k}$ ist eine Bijektion.
- (b) Sei nun $\beta \colon \mathcal{P}_0(\mathbb{N}) \to \mathbb{N}$ eine Bijektion, aber nicht notwendigerweise die aus Teil (a). Wir machen \mathbb{N} zu einer L_{Me} -Struktur \mathcal{N} , indem wir definieren: $\mathcal{N} \models m \in n$ genau dann, wenn $m \in \beta^{-1}(n)$. Zeigen Sie, dass die Axiome Aussonderung, Potenzmenge, Ersetzung und Vereinigung in \mathcal{N} erfüllt sind. Anmerkung: Sie brauchen Ihre Beweise nicht ausführlich zu formulieren. Es reicht, sich zu überlegen, welche Klassen genau Mengen sind und dann kurz anzumerken, warum daraus offensichtlich folgt, dass die Axiome gelten
- (c) Zeigen Sie: Wenn man in (b) mit $\beta = \beta_{(a)}$ arbeitet, gibt es kein $x \in \mathcal{N}$, das sich selbst enthält (d. h. mit $\mathcal{N} \models x \in x$).
- (d) Geben Sie eine Bijektion $\beta_{(d)} : \mathcal{P}_0(\mathbb{N}) \to \mathbb{N}$, so dass es, wenn man in (b) damit arbeitet, es ein $x \in \mathcal{N}$ gibt, das sich selbst enthält.

Hinweis: Sie brauchen $\beta_{(a)}$ nur leicht zu verändern.

Vorlesungswebseite: http://reh.math.uni-duesseldorf.de/~internet/ModTh_WS18/

 $^{^1}$ Moral: Eigentlich sollte es also eher Äquivalenzmenge statt Äquivalenzklasse heißen.