		Einführung in die Logik/	1	2	3	4	5	6	\sum
Name		Modelltheorie – Blatt 9							
		Abgabe am 20.12.2018 in der Vorlesung	g						
Matr-Nr.	Gruppe								

Bitte drucken Sie diese Seite aus und verwenden Sie sie als Deckblatt für Ihre Lösungen.

Wie üblich sind alle Antworten zu begründen/beweisen.

Aufgabe 1 (2 Punkte):

Bei Satz 3.6.11 wurde noch nicht gezeigt, dass jede wohlgeordnete Menge zu höchstens einer Ordinalzahl isomorph ist. Zeigen Sie also (z. B. per transfiniter Induktion über α): Ist $f: \alpha \to \beta$ eine ordnungserhaltenden Bijektion zwischen zwei Ordinalzahlen, so ist schon $\alpha = \beta$.

Aufgabe 2 (2 Punkte):

Zeigen Sie Bemerkung 3.7.4: Für beliebige nicht-leere Mengen M, N gilt: Es gibt eine surjektive Abbildung $M \to N$ genau dann, wenn $|N| \le |M|$ ist.

Aufgabe 3 (2+1 Punkte):

 \aleph_{α} ist doch sicher immer viel größer als α selbst, oder? Mal sehen...

- (a) Sei $f: On \to On$ ein monotones Funktional, d. h. für $\alpha \le \alpha'$ gelte $f(\alpha) \le f(\alpha')$. Wir nehmen außerdem an, dass f stetig ist, im Sinne von: $f(\lambda) = \sup\{f(\alpha) \mid \alpha < \lambda\}$ für alle Limes-Ordinalzahlen λ . Es soll gezeigt werden, dass f einen Fixpunkt besitzt, also dass ein $\beta \in On$ existiert mit $f(\beta) = \beta$.

 Genauer: Zeigen Sie, dass $\sup\{f^n(0) \mid n \in \omega\}$ ein Fixpunkt von f ist. (Hierbei ist f^n die n-fache Verknüpfung von f)
- (b) Folgern Sie: Es gibt ein $\alpha \in \text{On mit } \aleph_{\alpha} = \alpha$.

Aufgabe 4 (2+1 Punkte):

Sei α eine Ordinalzahl. Eine Teilmenge $M \subset \alpha$ heißt kofinal in α , wenn es zu jedem $\beta \in \alpha$ ein $\beta' \in M$ gibt mit $\beta \leq \beta'$. Zeigen Sie:

- (a) Ist β eine Nachfolger-Ordinalzahl und ist $M \subset \aleph_{\beta}$ kofinal in \aleph_{β} , so ist $|M| = \aleph_{\beta}$.
- (b) Ist β eine Limes-Ordinalzahl, so gibt es eine kofinale Menge $M \subset \aleph_{\beta}$ in \aleph_{β} mit $|M| = \beta$.

Aufgabe 5 (2 Punkte):

Zeigen Sie Lemma 3.7.11 aus der Vorlesung: Ist $\alpha \in \text{On und sind } (M_{\beta})_{\beta < \alpha}$ beliebige Mengen, so ist $|\bigcup_{\beta < \alpha} M_{\beta}| \le \max\{\aleph_0, |\alpha|, \sup_{\beta < \alpha} |M_{\beta}|\}.$

Hinweis: Zeigen Sie, dass die Kardinalität der linken Seite kleiner gleich der Kardinalität von $\kappa \times \alpha$ ist (falls κ und/oder α unendlich sind).

Aufgabe 6 (2+2 Punkte):

Zeigen Sie:

- (a) Sind κ , μ_1 , μ_2 unendliche Kardinalzahlen, so gilt: $(\kappa^{\mu_1})^{\mu_2} = \kappa^{\max\{\mu_1,\mu_2\}}$. Hinweis: Geben Sie eine Bijektion zwischen Abb $(\mu_1 \times \mu_2, \kappa)$ und Abb $(\mu_2, \text{Abb}(\mu_1, \kappa))$ an.
- (b) Sind κ und μ unendliche Kardinalzahlen mit $\kappa \leq \mu$, so ist $\kappa^{\mu} = 2^{\mu}$.