Name	• • • • • • • • • • • • • • • • • • • •	•••••	 	

$\begin{array}{c} Modell theorie\ I-Blatt\ 5 \\ Abgabe\ am\ 12.11.2019\ in\ der\ Vorlesung \end{array}$

1	2	3	4	5	\sum

Bitte drucken Sie diese Seite aus und verwenden Sie sie als Deckblatt für Ihre Lösungen.

Wie üblich sind alle Antworten zu begründen/beweisen.

Gruppe

Aufgabe 1 (2 Punkte):

Matr-Nr.

Seien $\delta_1(\underline{x}; y)$ und $\delta_2(\underline{x}; \underline{z})$ stabile Formeln. Zeigen Sie, dass dann auch $\phi(\underline{x}; y, \underline{z}) := \delta_1(\underline{x}; y) \wedge \delta_2(\underline{x}; \underline{z})$ stabil ist.

Aufgabe 2 (2 Punkte):

Zeigen Sie, dass das N in Bemerkung 6.5.4 bei stabilen Formeln δ beliebig groß sein kann: Finden Sie eine Struktur \mathcal{M} und für jedes $N \in \mathbb{N}$ eine stabile Formel $\delta(\underline{x}; \underline{y})$ und Tupel $\underline{a}_0, \dots, \underline{a}_{N-1}, \underline{b}_0, \dots, \underline{b}_{N-1} \in M^n$ (wobei n von M abhängen kann), so dass die Bedingung aus Definition 6.5.3 erfüllt ist, d. h.:

$$\mathcal{M} \models \delta(\underline{a}_i; \underline{b}_i) \iff 0 \le i \le j < N.$$

Hinweis: Dies funktioniert sogar mit der leeren Sprache.

Aufgabe 3 (4 Punkte):

In Definition 5.9.3 wurde der Begriff der κ -Stabilität eingeführt, für unendliche Kardinalzahlen κ . Bei mehrsortigen Sprachen muss die Definition wie folgt leicht angepasst werden:

Eine Theorie T heißt κ -stabil, wenn für jedes Modell $\mathcal{M} \models T$, jede Parametermenge $A \subset M$ mit Kardinalität $|A| \leq \kappa$ und jede Sorte S höchstens κ -viele Typen p(x) über A existieren, wobei x eine Variable der Sorte S ist.

Zeigen Sie mit dieser Definition: T ist κ -stabil genau dann, wenn T^{eq} κ -stabil ist.

Aufgabe 4 (2 Punkte):

Sei $\delta(x;y)$ eine beliebige Formel, sei \mathcal{M} eine Struktur und sei $p \in S_{\delta}(M)$ ein δ -Typ. Zeigen Sie:

- (a) Wird p durch ein Element $a \in M$ realisiert, so besitzt p eine δ -Definition über $\{a\}$.
- (b) Es existiert eine elementare Erweiterung $\mathcal{M}' \succ \mathcal{M}$ und eine Fortsetzung $q \in S_{\delta}(M')$ von p (d. h. $q|_{M} = p$), die (über M') δ -definierbar ist. (Warum erhält man, wenn p nicht definierbar ist, keinen Widerspruch zu Lemma 6.5.12?)

Aufgabe 5 (6 Punkte):

Wir arbeiten in der Struktur (\mathbb{Q} , <) und betrachten $\delta(x;y) := x < y$.

- (a) Beschreiben Sie alle δ -Typen in $S_{\delta}(\mathbb{Q})$, die über \mathbb{Q} δ -defnierbar sind.
- (b) Welche der δ -Typen aus (a) sind bereits über \mathbb{Z} δ -definierbar?
- (c) Gibt es δ -Typen in $S_{\delta}(\mathbb{Q})$, die in \mathbb{Q} als $\{<\}$ -Struktur nicht definierbar sind, aber in \mathbb{Q} als L_{oring} -Struktur? Und gibt es δ -Typen in $S_{\delta}(\mathbb{Q})$, die selbst in \mathbb{Q} als L_{oring} -Struktur nicht definierbar sind?