

$\begin{array}{c} \text{O-Minimalit\"{a}t-Blatt 2} \\ \text{Abgabe bis zum 28.4.2023, in der Vorlesung oder im Ilias} \end{array}$

Prof. I. Halupczok H. Khalilian

Wie üblich sind alle Antworten zu begründen/beweisen.

Bitte geben Sie an, welche Teilaufgaben Sie ganz gelöst / teilweise gelöst / gar nicht gelöst haben:

1 (a)	1 (b)	1 (c)	2 (a)	2 (b)	2 (c)

Auf dem gesamten Aufgabenblatt sei \mathcal{M} eine o-minimale Struktur.

Aufgabe 1 (2+2+2 Punkte):

- (a) Zeigen Sie: Die Eigenschaft, dass eine definierbare Menge $X\subseteq M$ definierbar zusammenhängend ist, ist uniform definierbar.
 - (Anmerkung: Dies ist auch für definierbare Teilmengen von M^n wahr; das werden wir jedoch erst später in der Vorlesung beweisen können.)
- (b) Wir wollen nun prüfen, dass die Eigenschaft, zusammenhängend zu sein (im normalen topologischen Sinn), im Allgemeinen nicht uniform definierbar ist, selbst wenn wir uns auf ein festes Modell beschränken. Genauer: Geben Sie ein Modell \mathcal{M} von DLO an und ein Element $a \in \mathcal{M}$, so dass die Menge

$$\{b \in M \mid b > a \text{ und das Intervall } (a, b) \text{ ist zusammenhängend}\}$$

nicht definierbar ist.

(c) Zeigen Sie: Die Eigenschaft, dass eine definierbare Menge $X \subseteq M$ endlich ist, ist uniform definierbar. Hinweis: Für definierbare Teilmengen einer o-minimalen Struktur gibt es eine andere Art, Endlichkeit zu charakterisieren.

Aufgabe 2 (2+2+2 Punkte):

Sei $f: M \to M$ definierbar und beschränkt. In dieser Aufgabe wollen wir zeigen, dass $\lim_{x \to +\infty} f(x)$ existiert. Zeigen Sie dazu:

- (a) Für jedes $b \in M$ existiert ein $x_0 \in M$, so dass gilt: f(x) b hat für alle $x > x_0$ das gleiche Vorzeichen (-, 0 oder +).
- (b) Die Menge

$$Y := \{b \in M \mid f(x) - b \text{ ist positiv für alle hinreichend großen } x\}$$

ist definierbar.

(c) Begründen Sie, dass sup Y existiert und zeigen Sie, dass sup $Y = \lim_{x \to +\infty} f(x)$ ist.