

O-Minimalität – Blatt 6 Abgabe bis zum 26.5.2023, in der Vorlesung oder im Ilias

Prof. I. Halupczok H. Khalilian

Wie üblich sind alle Antworten zu begründen/beweisen.

Bitte geben Sie an, welche Teilaufgaben Sie ganz gelöst / teilweise gelöst / gar nicht gelöst haben:

1 (a)	1 (b)	2 (a)	2 (b)	2 (c)

Aufgabe 1 (2+2 Punkte):

In dieser Aufgabe sollen ein paar Gegenbeispiele konstruiert werden zu Dingen, die plausibel klingen. Wir arbeiten dazu in $\mathbb R$ als L_{ring} -Struktur.

- (a) Geben Sie ein offenes Intervall $I \subseteq \mathbb{R}$ mit $0 \in I$ und eine definierbare Funktion $f: I \times I \to \mathbb{R}$ an, so dass für jedes feste $a \in I$ sowohl $f(\cdot, a)$ als auch $f(a, \cdot)$ stetig ist, aber so dass f nicht stetig am Punkt (0, 0) ist.
- (b) Sei $Z \subseteq \mathbb{R}^3$ eine (1,1,0)-Zelle. Man könnte vermuten, dass der Rand ∂Z sich als Vereinigung von $(i_1,i_2,0)$ Zellen schreiben lässt. Geben Sie eine Beispielzelle Z an, bei der dies falsch ist. Genauer: ∂Z soll ein "senkrechtes Intervall" $\{\underline{a}\} \times I$ enthalten (für ein $\underline{a} \in \mathbb{R}^2$ und ein Intervall $I \subseteq \mathbb{R}$).

Anmerkung: Wenn Sie selbst keine solchen Beispiele finden, können Sie evtl. in Analysis-Büchern danach suchen.

Aufgabe 2 (2+3+3 Punkte):

Wie immer soll \mathcal{M} eine o-minimale Struktur sein. In dieser Aufgabe wollen wir definierbare Teilmengen von M bis auf definierbare Bijektionen klassifizieren.

- (a) Wir wollen jeder definierbaren Menge $X \subseteq M$ eine ganze Zahl E(X) wie folgt zuordnen: Wenn X sich als disjunkte Vereinigung von n_0 (0)-Zellen (also Punkten) und n_1 (1)-Zellen (also offenen Intervallen) schreiben lässt, definieren wir $E(X) := n_0 - n_1$. Zeigen Sie, dass E wohldefiniert ist. also nicht von der Zerlegung von X in Zellen abhängt.
- (b) Seien nun $X, Y \subseteq M$ definierbar. Zeigen Sie: Existiert eine definierbare Bijektion $f: X \to Y$, so gilt E(X) = E(Y). Hinweis: Der Monotoniesatz ist nützlich.
- (c) Wir nehmen nun an, dass L die Ringsprache enthält. Zeigen Sie, dass zwischen zwei definierbaren Teilmengen $X, Y \subseteq M$ eine Bijektion existiert genau dann wenn:
 - beide Mengen endlich sind und die gleiche Kardinalität haben;
 - beide Mengen unendlich sind und E(X) = E(Y) gilt.

Anmerkung: In Blatt 4, Aufgabe 2 (a) wurde gezeigt, dass von jedem offenen Intervall $I \subseteq M$ eine definierbare Bijektion auf das Intervall (0,1) existiert. Dies können Sie hier verwenden, ohne es nochmal zu beweisen.