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For this little preliminary set of reminders, we will be shamelessly copying the definitions given
in:

• Modern Differential Geometry for Physicists, Chris J. Isham.
• Geometry, Topology and Physics, Nakahara Mikio.

(I would like to add as an aside that Prof. Isham is a fellow that I’ve long had a great degree
of admiration for, since despite him being trained as a physicist, Prof. Isham is a notable
proponent of the use of category theory in physics, and has been imploring young physicists for
many years to study the topic, as well as algebraic geometry.)

Definition. (Lie group.) A Lie group is a smooth manifold which is endowed with a group
structure such that the group operations

(1) · : G × G → G, (g1, g2) 7→ g1 · g2; and,
(2) −1 : G → G, g 7→ g−1

are smooth.

And, of course, it goes unspoken here that what we really mean is that these operations define
maps between manifolds, which when composed with the charts produce smooth functions be-
tween Euclidean spaces. With the risk of belabouring the point, in the case of the multiplicative
operation, if we instead denote the map by µ, and let {φi}i∈I be an atlas of G, what we mean
to say is that if gj ∈ imφj , gk ∈ imφk, g` ∈ imφ`, µ(gj , gk) = gj · gk = g`, then the composition

φ−1
` ◦ µ ◦ (φj , φk) is a smooth function:

×

G

G G

µ

Rn

Rn

Rn

φj

φk

φ`

(The above illustration is what I like to call a “blubber diagram,” and Prof. Isham makes great
use of them in Modern Differential Geometry for Physicists. Since this was the way I first
learned differential geometry, you’re going to be seeing a lot of them.)

Let M be a manifold and p be a point thereon.
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Definition. (Vector at a point on a manifold.) A vector at p is an equivalence class of
curves that are tangent at the point p.

This is traditionally illustrated by the following blubber diagram:

p

tangent
curves on M

“tangent
vector”

M

Since I got some questions about this during the presentation, allow me to go into some further
details on this. As Prof. Isham writes in his book, a curve on a manifold M is a smooth map
σ from some interval (−ε, ε) of the real line into M. Two curves σ1, σ2 are tangent at a point
p ∈M if:

(a) σ1(0) = σ2(0) = p;
(b) in some local coordinate system (x1, x2, . . . , xn) around the point, the two curves are ‘tan-

gent’ in the usual sense as curves in Rn:

dxi

dt
(σ1(t))

∣∣∣∣
t=0

=
dxi

dt
(σ2(t))

∣∣∣∣
t=0

for i = 1, 2, . . . , n.

Definition. (Tangent space at a point on a manifold.) The tangent space TpM is the
set of all tangent vectors at the point p. It is an easy matter to prove that TpM indeed has the
structure of a vector space.

On a blubber diagram, with manifolds are illustrated as two-dimensional surfaces, the tangent
space at a point is illustrated as a two-dimensional plane intersecting the manifold at that point
and tangent to that point in three dimensions. The vectors are then illustrated as arrows on
that plane.

M

p

TpM

Arguably, this is a deeply misleading way of illustrating things, since the very point of defining
vectors in the way we do (as equivalence classes of curves) is to avoid having to resort to
embedding our manifolds into higher-dimensional Euclidean space. Nevertheless, it is a very
useful schematic for conveying ideas.

Definition. (Pushforward.) A smooth map f : M → N naturally induces a map f∗ :
TpM→ Tf(p)N called the pushforward.
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M

p

TpM

~v

N

f(p)

Tf(p)N
f∗(~v)

f

f∗

The precise form of how this works out in the nitty-gritty algebra comes from how the vectors
are defined as tangents, that is, as directional derivatives, but I won’t bore you with that, it’s
a standard thing, for now, all you need to know is that there’s an unambiguous way to define
this thing naturally. See either Isham’s or Nakahara’s book for the details.

Definition. (Vector field on a manifold.) A vector field X on a manifold is a smooth
assignment of a tangent vector Xp ∈ TpM at each point p ∈M.

In terms of blubber diagrams, a vector field can be drawn as follows:

M

Definition. (Left-translation.) Let a, g be elements of a Lie group G. The left-translation
La : G → G of g by a is defined by

La(g) = ag.

The fact that this merits a definition of its own makes it seem far more profound than it really
is. Essentially, all we’re doing is being very careful about pointing out that, yes, G is a group,
but it’s also a manifold.

Definition. (Left-invariant vector field.) Let X be a vector field on a Lie group G. X
is said to be a left invariant vector field if La∗X|g = X|ag for all a, g ∈ G.
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So, for instance, this would not be an invariant vector field on G:

G G

La∗

But if this holds true for all a ∈ G:

G G

La∗

then we are indeed looking at an invariant vector field.

Lemma. A single vector at a given point of a Lie group defines a left-invariant vector field on
said Lie group and vice versa.

Having picked some arbitrary point, the vice versa thing is obvious. For the first part, just
take a vector at that point on the manifold and left-translate it to every other point on said
manifold, and presto, there you have it! The smoothness of the vector field being guaranteed
by the smoothness of the multiplication operation.

. . .
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Definition. (Lie algebra, preliminary.) The set of left-invariant vector fields on a Lie
group G is called its Lie algebra.

As per previous spoken remarks, this is of course a vector space. But why then call it an
algebra? A vector space on it’s own isn’t an algebra. Sure, we’ve got the additive structure,
but for something to be an algebra, it has to have a bilinear form to it as well! Fortunately,
there exists a very natural bilinear form to be found here!

Definition. (Integral curves.) Let X be a vector field on a manifoldM. An integral curve
x(t) of X is a curve on M whose tangent vector at x(t) is X|x(t). Note: Given a point p on a
manifold M and a vector field X, there exists a unique integral curve passing through p.

M

The uniqueness follows from the smoothness criteria for the definition of a vector field, which
renders the existence and uniqueness problem equivalent to the existence and uniqueness prob-
lem of solutions for ODEs, which is a problem that has been solved long ago.

The next two definitions I give are somewhat qualitative and informal. I would once again
advice you to have a look at either Nakahara or Isham for the definition (or, just Google it,
there are good stuff on the web too...)

Definition. (Lie derivative.) Vectors ~v1 and ~v2 at points p1 and p2 along an integral curve
on a manifoldM cannot be directly compared with one another, as they live in different vector
spaces, Tp1M and Tp2M. However, given said integral curve γ : R→M, we can define a map
σε :M→M, ε ∈ R, which is such that if p = γ(t) is a point on the curve, then σε maps it to
γ(t+ ε). We then define the Lie derivative of the vector field Y with respect to the vector field
X at the point p to be

LXY |p = lim
ε→0

1

ε
[(σ−ε)∗Y |σε(p) − Y |p],

where σε is defined by the integral curve defined by X that passes through p.

To give a better understanding of this formula, allow me to explain it in words and pictures.
What we are doing is taking the vector Y |σε(p) ∈ Tσε(p)M, pushforwarding it to TpM with
(σ−ε)∗, subtracting the vector Y |p and dividing by ε. In a sense, this gives a measure of how
much the vector field Y “changes along the vector field X.” The illustration below has been



6

shamelessly copied adapted from Nakahara:

Y |p

(σ−ε)∗Y |σε(p)

Y |σε(p)

γ

p σε(p)

Definition. (Lie bracket.) The Lie bracket is then given the rather straightforward defini-
tion

[X,Y ]|p = LXY |p.

Picking a coordinate system and expressing everything therein, it becomes readily apparent
that the Lie bracket obeys

• [x, x] = 0 ,
• [x, y] = −[y, x]

and it is then barely an inconvenience to verify that it is bilinear, and with just a little more
tediousness, one can show that it satisfies the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Specifically, see Nakahara, 2nd edition, p. 191-3.

Definition. (Lie algebra, midway.) The set of left-invariant vector fields on a Lie group G,
together with its Lie bracket [·, ·] is called its Lie algebra, and is denoted g (in Gothic Fraktur).

Why the Gothic Fraktur for denoting Lie algebras? Well, despite the fact that old Sophus Lie was a
good Norwegian who wrote all his works in French, much early work on Lie algebras were done
by the Germans Killing and Weyl, and back in those days, Germans liked to print everything
in Gothic Fraktur.

So there you have it, that’s where Lie algebras originally came from, and I personally always
like to include this little historical interlude, because I feel that they help to make Lie algebras
appear more tangible to some extent or another. They become something you can visualize
in your head. There is of course also the fact that Lie algebras are tremendously important
in quantum and particle physics, and when they show up, it because there is some wider Lie
group acting in the background, the Lie group reflecting some continuous symmetry exercising
its influence over the form of the equations and their solutions.

But mathematicians will not accept such silly straight jackets! Mathematicians like to abstract
and to generalize! And just as we went from having logarithms defined first only for integers
to natural powers, to having them defined for, well, eventually the whole complex plane, so
nowadays, Lie algebras are generally defined in this way, as M. Benoist defines them.

Definition. (Lie algebra, final.) Letting K be a field, a Lie algebra is a K-vector space g
together with a bilinear antisymmetric form, denoted [·, ·] obeying the Jacobi identity.

Example. Given a field K, we may give the vector space End(Kd) the structure of a vector
space by means of the commutator [A,B] = AB −BA for all A,B ∈ End(Kd).
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Theorem. (Ado.) Every finite dimensional Lie algebra over a field K can be viewed as a
subalgebra of End(V ) for some vector space V over K under the commutator bracket.

(We’ll get back to why I underlined that.)

Definition. (Abelian, ideal, nilpotence.) It is easy to extend the notion of an abelian
group to a Lie algebra. For an abelian group G, we have a · b = b · a for all a, b ∈ G, so for a
Lie algebra g, we should have [x, y] = [y, x] for all x, y ∈ g. Since antisymmetry already gives
us [x, y] = −[y, x], this is equivalent to saying that [g, g] = 0.

(I’d like to make a comment here that whereas every abelian Lie group has an abelian Lie algebra,
there are non-abelian Lie groups that nevertheless have abelian Lie algebras.)

The notion of an ideal from ring theory can similarly be extended to Lie algebras. Given a Lie
algebra g, a subspace h ⊂ g constitutes a Lie algebra ideal if [g, h] ⊂ h.

While the notion of a nilpotent element cannot be extended to a Lie algebra . . .

(Well, eventually we can, and we can already now, but it would be really trivial and stupid, since
the bracket of the same two elements is always zero.)

. . . we can extend the notion of a nilpotent (resp. solvable) group to Lie algebras. We say that
a Lie algebra is nilpotent (resp. solvable) if there exists a flag of ideals

0 = g0 ⊂ g1 ⊂ · · · ⊂ gi ⊂ · · · ⊂ gp = g

such that [g, gi] ⊂ gi−1 (resp. gi/gi−1 is abelian) for all i.

Let V be a vector space over a field K of dimension d and let g ⊂ End(V ) be a Lie subalgebra.

Theorem. (Engel.) If every element of g is nilpotent when regarded as a matrix, i.e., Mn = 0
for some n, then there exists a basis of V such that every element of g has the form of a strictly
upper triangular matrix.

Theorem. (Lie.) If g is solvable and K be algebraically closed, then there exists a basis of V
such that every element of g has the form of an upper triangular matrix.

M. Benoist gives the proofs of both theorems in his text, but a quick qualitative description
should be enough to convince you that these “ought” to be correct.

What is a strictly upper triangular matrix? Well, it’s a matrix which maps every vector to a
lower and lower subspace. In linear algebra, it’s a standard homework question to prove that
for any nilpotent matrix, you can find a basis such that the matrix is strictly upper diagonal.

What is an upper triangular matrix? Well, it’s a matrix with a set of invariant subspaces of
varying dimensions, each one contained within the next. From that insight, the rest almost
becomes a linear algebra problem.

Okay, kids! Now comes the tricky part!

A misunderstanding that has been the bane of many a young mathematician, and even more
physicists, as they first venture into Lie algebras, is keeping track of what the different matrices
mean! In fact, it’s a bane for many people when they start working with matrices in the first
place! Allow me to explain.
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As noted earlier from Ado’s theorem, any finite-dimensional Lie algebra can be encoded in terms
of endomorphisms of some vector space under the commutator bracket.

Example. Consider the Lie algebra

su(2) :=

{(
ia −z
z −ia

) ∣∣∣∣ a ∈ R, z ∈ C
}
,

which has basis

u1 =

(
0 i
i 0

)
, u2 =

(
0 −1
1 0

)
, u3 =

(
i 0
0 −i

)
,

and we may note

[u1, u1] = 0, [u1, u2] = 2u3, [u1, u3] = −2u2.

The thing is of course, that these endomorphisms over a vector space themselves define a
vector space, and so we have endomorphisms of endomorphisms, and because we are absolutely
Satanic, we encode these in terms of matrices.

And the worst thing of all is that the endomorphisms themselves define endomorphisms of
endomorphisms!

Definition. (Adjoint representation.) Let X,Y be two elements of a Lie algebra g. Then
we may define an action of X on Y known as the adjoint action by

adX(Y ) = [X,Y ].

First viewing u1, u2, u3 above as basis vectors, we can then represent u1 when viewed as the
element of the algebra by the matrix

[adu1 ] =

0 0 0
0 0 −2
0 2 0

 .

This is known as the adjoint representation.

(I have here of course assumed that I didn’t need to remind you of how the action of an algebra
corresponds to modules and representations. M. Benoist first gives that definition on p. 19, but
I felt the need to start using it already here.)

I cannot stress how much this managed to confuse me once upon a time! Anyway, this is why
it makes sense to make the following definition.

Definition. (Killing form.) Given a Lie algebra g over a field K, we define the Killing form
B = Bg to be the symmetric bilinear form g× g→ K given by

B(X,Y ) = trg(adXadY ).

(The subscript g means that we’re looking at g as a vector space. Since we’re taking a trace, we
obviously don’t have to specify a basis.)

(Earlier we noted that we could extend the notion of an ideal to a Lie algebra. Now we note
that we can also extend the notion of a radical ideal.)

Definition. (Radical.) The radical of a Lie algebra g, denoted rad(g), is the maximal solvable
ideal of g.
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(In the case of modules over rings and algebras, we define simple modules to be modules which
are non-zero and without proper submodules. We define semisimple modules to be modules which
are direct sums of simple modules. Similarly, we have as follows.)

Definition. (Simple and semisimple Lie algebras.) We say that a Lie algebra is simple
if it contains no proper ideals and if its dimension is greater than 1.

(The dimension demand is analogous to the non-zero demand for modules. Note that one-
dimensional Lie algebras are always abelian for obvious reasons, but, well, for some probably
well founded reason, akin to why 1 is not considered a prime, they are traditionally not considered
simple Lie algebras.)

We say that a Lie algebra g is semisimple if it fulfills any and all of the following equivalent
conditions:

(iii) g is a direct sum of simple ideals.
(i) Every abelian ideal of g is trivial.
(ii) The radical of g is trivial.
(iv) The Killing form Bg is non-degenerate.

(The connection to the adjoint representation is, as mentioned, very important in Lie algebra.
So much so that we may make the following definition.)

Definition. (Nilpotent and semisimple elements.) Let X be an element of a Lie algebra.
We say that it is nilpotent if the endomorphism adX is nilpotent. We say that it is semisimple
if the endomorphism adX is semisimple.

(This then leads to the following proposition.)

Proposition. (Jordan decomposition.) Let g be a semisimple Lie algebra. Every element
X of g admits a unique decomposition X = Xs+Xn with Xs semisimple, Xn, and [Xs, Xn] = 0.

(This really is the same as the standard Jordan-Chevalley decomposition in linear algebra, and
the proof can be found in most decent books out there on the subject.)

Representations of sl2.

sl(2,K) :=

{(
a b
c −a

) ∣∣∣∣ a, b, c ∈ K
}

(Now, you all know about modules and representations and simple modules and irreducible
representations and so forth, so let me begin this section with the very example that M. Benoist
decides to lead with.)

Example. The Lie algebra sl(2,K) permits, for all d ≥ 0, a representation of dimension d+ 1
over the K-vector space Vd which is made up of homogeneous polynomials of degree d over K2

as follows.

A base of the algebra is given by the matrices

X :=

(
0 1
0 0

)
, H :=

(
1 0
0 −1

)
, Y :=

(
0 0
1 0

)
,
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and they obey the relations

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H.

Now, a basis for the vector space Vd is given by the monomials {xd, xd−1y, . . . , xyd−1, yd} and
so a representation of the algebra is given by the assignment

X 7→ x
∂

∂y
, H 7→ x

∂

∂x
− y ∂

∂y
, Y 7→ y

∂

∂x
.

In this representation, X,Y only permits trivial eigenvectors, but for H, we have for a given
monomial xd−kyk that

Hxd−kyk = (d− k)xd−kyk − kxd−kyk = (d− 2k)xd−kyk.

We say that Vd is the representation of weight d because d is the highest possible eigenvalue of
H. The representations Vd are in fact the irreducible representations of sl(2,K).

(Now, if you’ve taken a course or two of quantum mechanics, you’re probably thinking that all
of this looks very familiar. X raises the power of x in a given monomial and lowers the power
of y, Y does vice-versa, and H gives the difference between the x power and the y power in
the monomial. This looks very similar to the ladder operators and the square of the magnitude
operator for orbital angular momentum.)

(And if you think that, you’re not wrong, because that is in fact exactly what this is! And we’ll
get there to explaining why that is! )

(And if you haven’t done quantum mechanics, no worries, but then this all probably looks very
arbitrary to you. Like, why come up with such a system, and give them these names and
introduce this term called weight or whatever? Where is this leading? Well...)

Definition. (sl2-triplets.) A triplet of elements (X,H, Y ) of a Lie algebra satisfying the
above commutation relations is called a sl2-triplet.

(It goes without saying that a Lie algebra containing such a triplet has a Lie subalgebra isomor-
phic to sl(2,K).)

Now then comes the mind-boggling thing!

Theorem. (Jacobson, Morozov.) Every nilpotent element x in a semisimple Lie algebra g
can be extended to a sl2-triplet (x, h, y).

That is, for every nilpotent element x can we find elements h, y in the Lie algebra such that the
three of them obey the commutation relations!

(This is why we can recognize the behaviour of them from orbital angular momentum in quantum
mechanics (where we’re actually dealing with the Lie algebra of the group SO(3)! That is why
this particular Lie algebra and its representations are so important to study! )

Root systems.

Let g be a semisimple Lie algebra.

So what to do next? Well, in his book “Lie Algebra in Particle Physics,” Howard Georgi
of Harvard gives a good description: “Our ultimate goal,” he says, “is to completely reduce
the Hilbert space of the world to block diagonal form.” We want to, as closely as possible,
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diagonalize everything! Why? Well, because it makes the computations so much easier! And
the way to start out is to look at commutative properties.

Definition. (Cartan subalgebra.) A Cartan subalgebra h of a Lie algebra g is a maximal
commutative subalgebra of semisimple elements.

The Cartan subalgebra is not necessarily unique! But remarkably that doesn’t matter! They
all give the same final results.

Next, we really double down on diagonalization!

For α ∈ h∗ (that is the dual of h) denote

gα = {X ∈ g|[H,X] = α(H)X for all H ∈ h}.

Definition. (System of roots.) We define the set

∆ = {α ∈ h∗ | gα 6= 0 and α 6= 0}

to be the system of roots of gα.

Why is this of interest? Well, because if every X ∈ g was in one of the gα, then we truly could
diagonalize everything! But, alas, obviously, we are not always going to be that fortunate. Some
little final module g0 will remain, and we will have decomposition

g = g0 ⊕ (
⊕
α∈∆

gα).

M. Benoist’s Theorem 2.20 contains a wide number of statements, all of which are of course
very much interesting on their own. Nevertheless, if you were to ask me what I think are the
two most important points to take away, it is that:

• g0 = h; and,
• The roots corresponds to weights in sl2-triplets.

Example. (Colour charge, adapted from Howard Georgi.) The Lie group SU(3) is
of interest in physics as it is a symmetry group of the quarks, giving rise to what is known as
colour charge. Therefore, the Lie algebra, su(3), turns out to be of interest too. It may be
defined as the set of 3× 3 hermitian, traceless matrices, and traditionally, it’s basis is given in
terms of the so-called Gell-Mann matrices:

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0

 λ4 =

0 0 1
0 0 0
1 0 0


λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0

 λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .

We find a Cartan subalgebra h for su(3) generated by the matrices λ3 and λ8. These have three
simultaneous eigenvectors, with corresponding eigenvalues1

0
0

 7→ (1/2,
√

3/6),

0
1
0

 7→ (−1/2,
√

3/6),

0
0
1

 7→ (1/2,−
√

3/3).
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Since

(λ1 + iλ2)2 =

0 2 0
0 0 0
0 0 0

0 2 0
0 0 0
0 0 0

 =

0 0 0
0 0 0
0 0 0

 ,

we should, by Jacobson and Morozov’s theorem, be able to extend this to an sl2-triplet. And
indeed we can. Writing X = λ1 + iλ2, Y = λ1 − iλ2, and H = λ3, we recover the desired
commutation relations.


