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Some quick reminders: Eilenberg–MacLane spaces

(From Allen Hatcher’s Algebraic Topology, Section 1.B.)

Definition

Let X be a path-connected space whose fundamental group is
isomorphic to a given group G and which has a contractible
universal covering space. Then X is said to be a KpG, 1q-space.

The condition that the universal covering space, be
contractible is equivalent to stating that πi pX q “ 0 for i ą 1.

A path connected CW-complex X whose nth homotopy group
is isomorphic to G and which is such that πi pX q “ 0 for i ‰ n
is called a KpG,nq-space (or complex) or
Eilenberg–MacLane space.
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Eilenberg–MacLane spaces

So, for instance...

For the Möbius stripe, M, we have π1pMq “ Z, and
πi pMq “ 0 if i ‰ 1. Therefore, M is a K pZ, 1q-complex.

For the torus, T , we have π1pT q “ Z2, and πi pT q “ 0 if
i ‰ 1. Therefore, T is a K pZ2, 1q-complex.

For the Klein bottle, K , we have π1pK q “ xx , y |x
2 “ y2y, and

πi pK q “ 0 if i ‰ 1. Therefore, K is a
K pxx , y |x2 “ y2y, 1q-complex.
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The topological definition of the homology of a group

The basic idea behind the notion of the homology of a group can
essentially be derived from Whitehead’s theorem.

Theorem

If a continuous map f : X Ñ Y between connected CW-complexes
induces isomorphisms f˚ : πnpX q Ñ πnpY q for all n, then f is a
homotopy equivalence.

Since homology is homotopy invariant, given a group G , we
may construct a space X such that X is a K pG , 1q-complex,
and then define the homology groups of G to simply be the
homology groups of X .

So, for instance, when we are discussing the homology of Z2,
we are “really” just talking about the homology of the torus.

This is the topological definition of the homology of a group.
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Resolutions

Given a ring R, and a module thereover M, we define the
resolution of M over R to be an exact sequence (possibly
infinite) of R-modules Ei

¨ ¨ ¨ Ñ En Ñ En´1 Ñ ¨ ¨ ¨ Ñ E2 Ñ E1 Ñ E0
ε
ÝÑ M Ñ 0.

In the interest of notational economy, this is frequently
written in the form ε : E Ñ M.

A resolution is free if all the modules Ei are free.

A resolution is projective if all the modules Ei are projective.
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The algebraic definition of the homology of a group

Brown gives this definition of the homology of a group (p. 35):

Definition

Let G be a group and ε : F Ñ Z a projective resolution of Z over
ZG . We then define the homology groups of G by

Hi pG q “ Hi pFG q.

(We don’t need to worry about the choice of free resolution,
as they all give rise to the same homology groups. Touched
upon by Brown in Sec. II.2, a better (in my view) proof in
Hatcher as Lemma 3.1 on p. 194.)

This is the algebraic definition of the homology of a group,
and Brown shows that it is in fact equivalent to the
topological definition (treated by Dominic Witt last week).
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Hopf’s Theorems

Lemma

(Brown’s Lemma II.5.1.) Let

Fn Ñ ¨ ¨ ¨ Ñ F0 Ñ ZÑ 0

be an exact sequence of ZG -modules where each Fi is projective.
Then Hi pG q – Hi pFG q for i ă n and there is an exact sequence

0 Ñ Hn`1pG q Ñ pHnpF qqG Ñ HnpFG q Ñ HnpG q Ñ 0.

Proof. Extend F to a full projective resolution F`:

¨ ¨ ¨ Ñ F 1n`2 Ñ F 1n`1 Ñ Fn Ñ Fn´1 Ñ ¨ ¨ ¨ ÑÑ F1 Ñ F0 Ñ ZÑ 0.

It is immediately clear that for i ă n, Hi pFG q – Hi pF
`
G q “ Hi pG q.
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Hopf’s Theorems

Furthermore, from algebraic topology, we know that the short
exact sequence

0 Ñ FG Ñ F`G Ñ F`G {FG Ñ 0

gives rise to a long exact sequence

¨ ¨ ¨ ÑHi`1pF
`
G {FG q Ñ Hi pFG q Ñ Hi pF

`
G q Ñ

ÑHi pF
`
G {FG q Ñ Hi´1pFG q Ñ . . .

Since Fn`1 “ 0, we may conclude that Hn`1pFG q “ 0. Further,
since Fn “ F`n , we may conclude that HnpF

`
G {FG q “ 0. By

definition, Hi pF
`
G q “ Hi pG q, so we have an exact sequence

0 Ñ Hn`1pG q Ñ Hn`1pF
`
G {FG q Ñ HnpFG q Ñ HnpG q Ñ 0.
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Hopf’s Theorems

Further prying reveals that Hn`1pF
`
G {FG q may be identified with

the cokernel of the arrow pF 1n`2qG Ñ pF 1n`1qG , which, by Brown’s
II.2.2, may be identified with pHnpF qqG , finishing the proof.

˝
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Theorem

(The Fundamental Theorem of Homological Algebra.)
(FTHA.)
Let

. . .
B
ÝÑ Cn

B
ÝÑ Cn´1

B
ÝÑ . . .

B
ÝÑ C1

B
ÝÑ C0

B
ÝÑ 0

and
. . .

B1

ÝÑ C 1n
B1

ÝÑ C 1n´1
B1

ÝÑ . . .
B1

ÝÑ C 11
B1

ÝÑ C 10
B1

ÝÑ 0

be chain complexes and let r be an integer. Let pfi : Ci Ñ C 1i qiďr
be a family of maps such that B1i ˝ fi “ fi´1 ˝ Bi for i ď r .

If Ci is projective for i ą r and Hi pC
1q “ 0 for i ď r , then pfi qiďr

extends to a chain map f : C Ñ C 1, and f is unique up to
homotopy. More precisely, any two extensions are homotopic by a
homotopy hi such that hi “ 0 for i ď r .
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Hopf’s Theorems

Proof.

Due to time constraints, we omit the proof, though it is far from
difficult and may be found in Brown’s book as Lem. I.7.4

It should be noted that usually, the FTHA is stated merely for
exact sequences and/or resolutions, losing some of the generality
and hence usefulness that can be obtained from the theorem in its
full form.
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Hopf’s Theorems

Proposition

A coving space projection p : X̃ Ñ X induces isomorphisms
p˚ : πnpX̃ q Ñ πnpX q for all n ě 2.

Proof.

Omitted due to time constraints. (See Spanier’s Algebraic
Topology and Hatcher (where it is Prop. 4.1).)

Basic homotopy theory (see Hatcher, Prop. 1.39), tells us that if
X̃ is the universal cover of X , then the group of deck
transformations of X̃ is isomorphic to π1pX q. This implies:

Lemma

Let X̃ be the universal cover of X for which G “ π1pX q. Then
C‚pX̃ q is a complex of free ZG -modules augmented over Z.
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Hopf’s Theorems

Theorem

(Brown’s Theorem II.5.2.) For any connected CW complex Y,
there is a canonical map ψ : H‚pY q Ñ H‚pπq where π “ π1pY q. If
π1pY q “ 0 for 1 ă i ă n (for some n ě 2) then ψ is an
isomorphism Hi pY q

„
ÝÑ Hi pπq for i ă n, and the sequence

πnpY q
h
ÝÑ HnpY q

ψ
ÝÑ Hnpπq Ñ 0

is exact.

Proof. (Brown.) Let X be the universal cover of Y and let F
be a projective resolution of Z over Zπ. The proof follows from the
afore listed results:

C‚pX q is a complex of free Zπ-modules over Z.

Therefore, by the FTHA, we have a chain map C‚pX q Ñ F
well-defined up to homotopy.

Max Lindh The Homology of a Group II



Hopf’s Theorems

By the right-exactness of the co-invariant functor (established
last week), we obtain a map C‚pY q Ñ Fπ, which in turn
induces the desired map ψ : HnpY q Ñ Hnpπq.

Since πi pX q – πi pY q for i ą 1, if πi pY q “ 0 for 1 ă i ă n,
then πi pX q “ 0 for i ă n. (The case i “ 1 is covered by the
fact that a universal cover of a connect space is simply
connected and so has trivial fundamental group.)

By a result by Hurewicz, this implies that Hi pX q “ 0 for i ă n
and the Hurewicz map h : πnpX q Ñ HnpX q is an isomorphism.

Considering how homology arises from chain complexes, we
then have a partial free resolution in

CnpX q Ñ Cn´1pX q Ñ ¨ ¨ ¨ Ñ C1pX q Ñ C0pX q Ñ ZÑ 0.

whose nth homology group is the group ZnpX q of n-cycles of
X .
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Hopf’s Theorems

From hereon, by making use of Lem. 5.1, the fact that
h : πnpX q Ñ HnpX q, and that πi pX q – πi pY q for i ą 1, we
may finally establish that ψ is an isomorphism
Hi pY q

„
ÝÑ Hi pπq for i ă n, and the sequence

πnpY q
h
ÝÑ HnpY q

ψ
ÝÑ Hnpπq Ñ 0

is exact.

˝
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Hopf’s Theorems

Theorem

(Brown’s Theorem II.5.3.) If G “ F {R where F is free, then
H2pG q – pR X rF ,F sq{rF ,Rs.

Before we do the proof, we first need to establish a few terms:

Given a group G with subgroups A,B, by rA,Bs, we mean the
subgroup of G generated by the commutator of A and B.
By the term a bouquet of n circles, we mean a wedge
product of n circles, which sort of looking like a flower.
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Hopf’s Theorems

Proof. (Kenneth Brown.)
It is well-known that the fundamental group of a bouquet of n
circles is ˚n

i“1Z. Therefore, we may construct the space Y to be a
bouquet of as many circles as needed for us to have π1pY q “ F .
We may de-
note F “ F pSq, where S is the set indexing the circles making up Y .

Next, let Ỹ be a covering space of Y such that if p : Ỹ Ñ Y is
the covering projection, then p˚pπ1pỸ qq is isomorphic to the
normal subgroup R of F pSq.
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Hopf’s Theorems

Then, picking a basepoint ṽ P Ỹ lying over the vertex v P Y , we
may identify G “ F pSq{R with the group of deck transformations
of Ỹ .

Given an element f P F , we may identify regard f as a
combinatorial path in F as per the following scheme. By means
of example, let F “ Z ˚ Z ˚ Z “ xa, b, cy, so that Y is a bouquet
of three circles. Then:
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Hopf’s Theorems

By f̃ denoting the lifting of f to Ỹ starting at ṽ . The path f̃ then
ends at the vertex f ¨ ṽ where f is the image of f in G .

Following Brown further, the complex C‚pỸ q is then a complex of
free ZG -modules, giving us a partial resolution in

C1pỸ q Ñ C0pỸ q Ñ ZÑ 0.

Lem. II.5.1 then says H2pG q – kertpH1pỸ qqG Ñ H1pY qu.
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Hopf’s Theorems

Brown next notes that H1pỸ q – pπ1pỸ qqab – Rab (where ab
stands for abelianized), and makes the claim that H1pỸ q and
– Rab are in fact isomorphic as G -modules.

Specifically, the G -action G ˆ Rab Ñ Rab is given as f ¨ r :“ frf ´1.

With the machinery sketched out above, this is surprisingly easy to
prove. The morphism Rab Ñ H1pỸ q is induced by the map
d : R Ñ H1pỸ q which merely lifts r P R to its associated path r in
Ỹ . Since these are always closed and brings you back to where you
started, we have

dpf ¨ rq “ dpfrf ´1q

“ f fr f ´1

“ f r “ f ¨ dprq (since H1pỸ q is abelian)Max Lindh The Homology of a Group II



Hopf’s Theorems
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Hopf’s Theorems

The matter in question is probably best illustrated by an
illustration. Let Y be a bouquet of 2 circles, and let Ỹ be the
cover associated with R “ xa2, b2, pabq2, pbaq2, ab2ay, and consider
the action of a P xa, by “ Z ˚ Z on ab2a P R.
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The G -action functioning as it should, we finally obtain a
commutative diagram

pH1pỸ qqG pRabqG R{rF ,Rs

H1pY q Fab F {rF ,F s

–

–

“

“

From which he is finally able to draw the desired conclusion,
namely, that

H2pG q – kerR{rF ,Rs Ñ F {rF ,F s “ pR X rF ,F sq{rF ,Rs.

˝
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Hopf’s Theorems

The abelianization of R in the above proof when considered as a
G -module is called the relation module, and within the topological
framework just discussed, you can draw some interesting
conclusions from the form that R takes.
Let G “ xS ; r1, r2, r3, . . . y “ F pSq{R, where R is the normal
closure in F pSq of elements r1, r2, r3, . . .

Exercise

(Ex. 5.2(a).) The relation module Rab is generated by the images
of r1, r2, r3, . . .

Next, define the 2-complex associated to the presentation of G as
the two dimensional CW-complex

˜

ł

sPS

S1
s

¸

ď

r1

e21
ď

r2

e22
ď

r3

e23 Y . . .
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Hopf’s Theorems

...in the above, the 2-cell e2i is attached to
Ž

sPS S
1
s by the map

S1 Ñ
Ž

sPS S
1
s corresponding to the path r1 assumes in Y .

Exercise

(Ex. 5.2(b).) The elements r1, r2, r3, . . . generate Rab freely
if and only if the 2-complex associated to the given presentation of
G is a K pG , 1q-complex.

Let G “ xS ; ry, where r is an arbitrarily chosen element (making G
a one-relator group). We can then write r “ un for some u where
n ď 1 is maximal.

Lyndon and Schupp showed that the image t of u has then order
exactly n, and that if by C we denote the cyclical group of order n
generated by t, then the surjection ZrG{C s Ñ Rab is an
isomorphism.
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Hopf’s Theorems

Exercise 5.2(c) challenges the reader to
come up with a rather elaborate geometric interpretation of this fact.

Full expositions of the answers to this question can be found in the
official solutions manual to Kenneth Brown’s book, compiled by
Christopher A. Gerig.
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Functoriality

This section is basically only here to say that just as in the
“ordinary case”, homology is a (covariant) functor from the
category of topological spaces to the category of abelian abelian
groups, so in our case, homology is a (covariant) functor from the
category of groups to the category of abelian groups.

This follows from the FTHA.

The chain complex C‚pG q is, in the words of Kenneth Brown,
“clearly” functorial in G . Personally, I’d like to add a note that
C‚pG q is of course just the chain complex FG where F is the
standard resolution of G .

Consequently, given a group morphism α : G Ñ G 1, we can
construct projective resolutions F and F 1 of ZG and ZG 1
respectively, and via the morphism α define an action of G on F
and to view that as a complex of G -modules.

By means of the FTHA, it can then be shown that there exists an
augmentation preserving G -chain map τ : F Ñ F 1 (well-defined up
to homotopy), which induces a map FG Ñ F 1G (also well-defined
up to homotopy), which finally, then in turn, induces a well-defined
map

α˚ : H˚pG q Ñ H˚pG q.
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Functoriality

By means of the FTHA, it can then be shown that there exists an
augmentation preserving G -chain map τ : F Ñ F 1 (well-defined up
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up to homotopy), which finally, then in turn, induces a well-defined
map

α˚ : H˚pG q Ñ H˚pG q.
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The Mayer-Vietoris Sequence

The Mayer-Vietoris sequence is a tool in algebraic topology that
has long spooked me by virtue of how counter-intuitive it can be.

Algebraically, little stands out about Mayer-Vietoris. Consider what
Hatcher has to say (p. 149):

Definition

Let X be a space with pairs of subspaces A,B Ă X such that X is
the union of the interiors of A and B. Then there exists an exact
sequence of the form

. . .Ñ HnpAX Bq Ñ HnpAq ‘ HnpBq Ñ HnpX q Ñ

Ñ Hn´1pAX Bq Ñ Hn´1pAq ‘ Hn´1pBq Ñ . . .

Nothing too out of the ordinary, is it? But consider then the
geometric implications!
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The Mayer-Vietoris Sequence
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The Mayer-Vietoris Sequence

But I digress...

It is actually not too difficult to translate the notion of the
Mayer-Vietoris sequence of a space into a notion of a
Mayer-Vietoris sequence of a group, or rather, a collection of
groups.

We can conceive of a notion of “intersections of groups” and
“unions of groups” by means of the notion of the pushout square,
or as Brown calls it, the amalgamated sum.
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The Mayer-Vietoris Sequence

Definition

(Brown.) Let A,G1,G2 be groups and let α1 and α2 be group
morphisms AÑ G1 and AÑ G2. The amalgamated sum of G1

and G2 is then a group G fitting into a commutative square

A

G1

G2

G

α2

α1 β2

β1

with the following universal mapping property : Given a group H
and group morphisms γi : G1 Ñ H (i “ 1, 2) with γ1α1 “ γ2α2,
there is a unique map ϕ : G Ñ H such that ϕ ˝ βi “ γi . We then
write G “ G1 ˚A G2.
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The Mayer-Vietoris Sequence

In the context of spaces, pushout squares, or amalgamated sums
are defined similarly, and for our purposes, it suffices with a quick
illustration to get the gist:
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The Mayer-Vietoris Sequence

With reference to the discussion at the outset about the topological
interpretation of the homology of a group, everything turns out to
follow by means of this wonderful theorem of Whitehead’s:

Theorem

(Whitehead, as quoted by Brown.) Any amalgamation
diagram [as on the slide before last] with α1 and α2 injective can
be realized by a diagram

Y

X1

X2

X

of K pπ, 1q-complexes such that X “ X1 Y X2 and Y “ X1 X X2.
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The Mayer-Vietoris Sequence

The proof is not particularly difficult, and is broken up into a
succession of neat little lemmas by Brown. Most neat of all is this
corollary that follows from Whitehead’s theorem (marked as II.7.7
in Brown’s book):

Corollary

Given G “ G1 ˚A G2 where A ãÑ G1 and A ãÑ G2, there is a Mayer
Vietoris sequence

¨ ¨ ¨ Ñ HnpAq Ñ HnpG1q ‘ HnpG2q Ñ HnpG q Ñ Hn´1pAq Ñ . . .

...and with that, we are done!
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