Partielle Differentialgleichungen 1

Heinrich Heine Universität Düsseldorf

Prof. Dr. Jürgen Saal Christian Gesse

WS 2020/21

Übungsblatt 1

Hinweis: Es werden nur die ersten beiden Aufgaben korrigiert und bewertet.

[K] Aufgabe 1.1 (4 Punkte)

Seien $(\Omega, \mathcal{A}, \mu)$ ein vollständiger Maßraum und X ein Banachraum. Dann sind für eine Funktion $f: \Omega \to X$ die folgenden Aussagen äquivalent:

- 1. f ist messbar und fast separabel-wertig.
- 2. Es gibt eine Folge von Stufenfunktionen $f_k:\Omega\to X,$ sodass $f_k\stackrel{k\to\infty}{\longrightarrow} f$ f.ü. in $\Omega.$

Hinweis: Eine Funktion $f: \Omega \to X$ heißt fast separabel-wertig, wenn es eine Nullmenge $N \subset \Omega$ gibt, sodass $f|_{\Omega \setminus N}$ separabel-wertig ist.

[K] Aufgabe 1.2 (4 Punkte)

Seien $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und X, Y Banachräume. Seit weiterhin $f: \Omega \to X$ integrierbar und $T \in \mathcal{L}(X, Y)$. Dann ist auch $Tf: \Omega \to Y$ integrierbar und es gilt

$$\int_{\Omega} Tf \ d\mu = T \int_{\Omega} f \ d\mu.$$

Aufgabe 1.3

Sei X ein Banachraum. Für $f \in C([0,\infty),X)$ gilt

$$\lim_{t \to 0} \frac{1}{t} \int_0^t f(s) \, ds = f(0).$$

Abgabe bis zum Freitag, den 06. November 2020, 11.00 Uhr über das Ilias-System.