Übungsblatt 11

Partielle Differentialgleichungen II, SoSe 2017

Prof. Dr. Jürgen Saal, Pascal Hobus

Abgabe: 04.07.17 in der Übung

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF

Aufgabe 1: (Fortsetzungsoperator)(4P)

Sei X ein Banachraum, $T \in (0, \infty)$ und ${}_{0}W^{1,p}((0,T),X) := \{u \in W^{1,p}((0,T),X) \mid u(0) = 0\}$. Für eine Funktion $u : [0,T] \to X$ definieren wir

$$E_T u(t) := \begin{cases} 0, & -\infty < t < 0 \text{ oder } 2T \le t < \infty \\ u(t), & 0 \le t < T \\ u(2T - t), & T \le t < 2T. \end{cases}$$

Zeigen Sie für $1 \le p < \infty$, dass sowohl

$$E_T: L^p((0,T),X) \longrightarrow L^p((a,b),X)$$

als auch

$$E_T: {}_0W^{1,p}((0,T),X) \longrightarrow W^{1,p}((a,b),X)$$

für alle $-\infty \le a \le 0 < T \le b \le \infty$ ein Fortsetzungsoperator (d.h. ein stetiger linearer Operator mit $E_T u|_{(0,T)} = u$) ist. Zeigen Sie weiterhin, dass es ein von den Intervallen (0,T) und (a,b) unabhängiges C > 0 gibt, sodass $||E_T||_{\mathscr{L}(L^p((0,T),X),L^p((a,b),X))} \le C$ und $||E_T||_{\mathscr{L}(0W^{1,p}((0,T),X),W^{1,p}((a,b),X))} \le C$ gilt. Hinweis: Zeigen Sie die Aussage zuerst für den Fall $(a,b) = \mathbb{R}$ und verwenden Sie, dass $C^\infty([0,T],X)$ dicht in $W^{1,p}((0,T),X)$ liegt.

Aufgabe 2: (Soboleveinbettung mit Zeitspur 0 und Poincaré-Ungleichung)(2P+2P) Sei X ein Banachraum und $1 \le p < \infty$. Zeigen Sie die folgenden Aussagen.

(a) Für $T_0 \in (0, \infty)$ gilt die Soboleveinbettung

$$_0W^{1,p}((0,T),X)\hookrightarrow C([0,T],X)$$

gleichmäßig in $T \in (0, T_0]$, d.h. es gibt ein C > 0, sodass $||u||_{C([0,T],X)} \le C||u||_{W^{1,p}((0,T),X)}$ für alle $u \in {}_{0}W^{1,p}((0,T),X)$ und für alle $T \in (0,T_0]$ gilt.

(b) Für $T \in (0, \infty)$ gilt die Poincaré-Ungleichung

$$||u||_{L^p((0,T),X)} \leqslant T||\dot{u}||_{L^p((0,T),X)}$$

für alle $u \in {}_{0}W^{1,p}((0,T),X) = \{u \in W^{1,p}((0,T),X) \mid u(0) = 0\}.$

Hinweis: Verwenden Sie Aufgabe 1, um (a) zu lösen.

Aufgabe 3: (*R*-sektorielle stetige Operatoren)(4P)

Sei X ein Banachraum und $A \in \mathcal{L}(X)$ mit $\sigma(A) \subset \Sigma_{\varphi}$ für einen Winkel $\varphi \in (0, \pi)$. Zeigen Sie, dass A ein \mathcal{R} -sektorieller Operator mit $\varphi_A^{\mathcal{R}} \leq \varphi$ ist. Insbesondere gilt $A \in \mathrm{MR}(X)$, falls $\varphi < \frac{\pi}{2}$ und X von der Klasse \mathcal{HT} ist.

Zur Erinnerung: Ein linearer und dicht definierter Operator $A:D(A)\subset X\to X$ mit dichtem Bild heißt (\mathcal{R} -)sektoriell, wenn es einen Winkel $\varphi\in(0,\pi)$ gibt, sodass $\sigma(A)\subset\overline{\Sigma}_{\varphi}$ gilt und

$$\{\lambda(\lambda+A)^{-1}:\lambda\in\Sigma_{\pi-\varphi}\}\subset\mathscr{L}(X)$$
 (*)

 $(\mathcal{R}$ -)beschränkt ist. Das Infimum aller $\varphi \in (0, \pi)$, sodass (*) $(\mathcal{R}$ -)beschränkt ist wird mit φ_A bzw. $\varphi_A^{\mathcal{R}}$ bezeichnet.

Hinweis: Betrachten Sie für $\lambda \in \Sigma_{\pi-\varphi}$ die Fälle $|\lambda| \leq 2||A||_{\mathscr{L}(X)}$ und $|\lambda| > 2||A||_{\mathscr{L}(X)}$. Verwenden Sie Bem. 9.22 (d) für ersteren Fall und stellen Sie $\lambda(\lambda - A)^{-1}$ für letzteren Fall durch die Neumann'sche Reihe dar.