

Spezielle Themen: Polyzyklische Gruppen – Blatt 12

Abgabe der Lösungen am 24.01.2017 in der Vorlesung

Bitte bereiten Sie Aufgabe 12.1 für die Übungsstunde vor und geben Sie eine schriftliche Lösung zu der Aufgabe 12.2 ab; weitere Informationen auf

http://reh.math.uni-duesseldorf.de/~internet/PolyzyklischeGruppen_WS1617/

Aufgabe 12.1

Bezeichne mit $\overline{\mathbb{Q}}$ den algebraischen Abschluß von \mathbb{Q} . Sei $G \leq \mathrm{GL}_n(\mathbb{Z})$ eine lineare Gruppe, die in $\mathrm{GL}_n(\overline{\mathbb{Q}})$ konjugiert zu einer Gruppe von oberen Dreiecksmatrizen ist.

Zeigen Sie: Es existieren ein Zahlkörper F mit Ganzheitsring O und ein $x \in GL_n(F)$ dergestalt, daß G^x in der Gruppe Tr(n, O) der invertierbaren oberen Dreiecksmatrizen über O liegt.

Aufgabe 12.2 (4 Punkte)

Sei A ein endlich erzeugter, freier abelscher Normalteiler einer Gruppe E, und sei E/A ebenfalls abelsch. Weiter sei $A \not \leq Z(E)$, und A sei rational irreduzibel als E/A-Modul.

Zeigen Sie: Dann existiert $H \leq E$ mit $H \cap A = 1$ und $|E: HA| < \infty$.

Hinweis: Wähle $x \in E \setminus C_E(A)$ und setze $H = C_E(x)$. Um zu zeigen, daß $|E:HA| < \infty$ ist, verfizieren Sie: $Kern(\vartheta) \le HA$ für

$$\vartheta: C_E(A/[A,x]) \to A/[A,x], \qquad g \mapsto [A,x].[x,g]$$

sowie $|A/[A,x]| < \infty$.