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Trees

Why are we interested in regular rooted
trees?

Groups of automorphisms of regular rooted trees are a rich source
of examples in group theory. For example the (first) Grigorchuk
group Γ has a number of surprising properties.

• It has a solvable word problem.
• It is a  finitely generated, in finitely torsion group. In fact,

every element has order a power of 2. However, it is not
 finitely presented.

• It has intermediate word growth.
• It is amenable but not elementary amenable.
• It is commensurable its own direct product Γ× Γ.
• It is just infinite.



Trees

What is a regular rooted tree T ?
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• Is an infinite tree.
• With a fixed vertex, the root.
• Regular: Every vertex has the same number of descendants.
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What is a regular rooted tree T ?
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• The tree is self-similar: Every tree hanging from any vertex is
isomorphic to the tree itself.



Trees

What is a regular rooted tree T ?

Equivalently, let X be an alphabet of m letters. For example,
X = {1, 2, . . . ,m}. Denote by X the set of all finite words over the
alphabet X, that is

X∗ = {x1x2 · · · xn | n ∈ N, xi ∈ X} ∪ {∅}

Then every vertex in the m-adic regular rooted tree can be
identified with an element in X as follows:

• The root is identified with the empty word ∅.
• Each of the m descendants of the root is associated with a

unique letter from the alphabet X in an ordered manner.
• Any other vertex of the tree can be then inductively identified

with the word vx, where v is the father or predecessor of said
vertex, and x indicates which descendant the vertex is.
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Trees

What is an automorphisms of a regular
rooted trees?

Automorphisms of T (Aut T )
Bijections of the vertices that preserve incidence.

f

f

f
... ...
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u

v

f(u)

f(v)

The set of all automorphisms of T , Aut T , is a group with respect
to composition between functions.



Trees

What is an automorphisms of a regular
rooted trees?

Here are some examples of automorphisms of T :
• The identity map, which we will denote by 1.
• Rooted automorphisms: transformations that rigidly permute

the subtrees hanging from the first-level vertices, i.e. X,
according to some permutation in the symmetric group
Sym(m).



Trees

What is an automorphisms of a regular
rooted trees?

Keep in mind that, if |X| = |Y|, then the regular rooted trees X∗

and Y∗ are isomorphic. Therefore AutX∗ ∼= AutY∗.
Let g be an element in AutT . Then:

• the automorphism g sends the root to the root, that is
g(∅) = ∅,

• g(Ln) = Ln, in particular if u ∈ Ln, then g(u) ∈ Ln,
• if g fixes a vertex u, it also fixes the path from ∅ to u.



Trees

Labels

Let g ∈ AutT be an automorphism that sends the vertex u ∈ T to
another vertex v,in other words g(u) = v. Then, by definition, any
descendant ux of u must be sent to some descendant vy of v,
where x, y ∈ X. Therefore,

g(ux) = g(u)σ(x) = vσ(x) = vy.

for some σ ∈ Sym(m), which corresponds to the rooted
automorphism of the tree Tv that has the vertex v as its root.
We σ denote by g(u) and we call it the label of g at the vertex u.



Trees

Labels

• The set of all labels of g is called the portrait of g.
• The automorphism g ∈ AutT is completely determined by its

portrait.
Let u = x1 · · · xn−1xn ∈ T , then

g(u) = g(x1 · · · xn−1)g(x1···xn−1)(xn) = g(∅)(x1)g(x1)(x2) · · · g(x1···xn−1)(xn)

Here are some rules for the labels:
• (f g)u = f(u)g(f(u)).
• (f −1)(u) = (f(f−1(u)))

−1.
• (f g)(u) = (g(g−1(u)))

−1f(g−1(u))g(f(g−1(u)).



Trees

Section or states

Let g ∈ AutT be an automorphism. We may consider how g acts
on the subtree hanging from g(u), that is, Tg(u), which as we
know, is isomorphic to T :
We denote by g|u the section of g at the vertex u, which is defined
by

g(uv) = g(u)g|u(v)

where here uv is a descendant of u.
Note that the section of g at the vertex u, which we denote by g|u,
is an automorphism that sends v to g|u(v). In particular, if
g(u) = u, then g|u is just the restriction of g to Tu, which is the
tree hanging from u.



Trees

Sections or states

Here are some rules for the labels:
• (f g)|u = f|ug|f(u).
• (f −1)|u = (f|f−1(u))

−1.
• (f g)|u = (g|g−1(u))−1f|g−1(u)g|f(g−1(u).
• If u = u1u2, then f|u = (f|u1)|u2 .



Trees

The stabilizers
We now describe some important subgroups of AutT . For a vertex
u ∈ T , one can define the vertex stabiliser of u as follows:

Stab(u) = {g ∈ AutT | g(u) = u}

This is the subgroup of Aut T consisting on all automorphisms
that fix the vertex u.

...

... ... ... ... ... ... ... ... ...
u



Trees

The stabilizers

One can also consider the n-th level stabiliser, which is described
as follow:

Stab(n) = {g ∈ AutT | g(u) = u, ∀u ∈ Ln}

This is the normal subgroup of Aut T consisting on all
automorphisms that fix all vertexes up to level n.

· · ·

··· ··· ···
... ... ... ... ... ... ... ... ...



Trees

Stabilizers of G ≤ Aut T

Let G be a subgroup of Aut T . Then

StabG(u) := G ∩ Stab(u)

is the subgroup of G consisting on all automorphisms of G that fix
the vertex u;

StabG(n) := G ∩ Stab(n)

is the (normal) subgroup of G consisting on all automorphisms of
G that fix all vertexes up to level n.



Trees

The ψ maps:

We can define the following maps:

ψu : Stab(u) −→ AutT
g 7−→ g|u.

ψn : Stab(n) −→ AutT × mn
· · · ×AutT

g 7−→ (g|u)u∈Ln .

Note that Stab(n) ∼= AutT × mn
· · · ×AutT .



Trees

The ψ maps:

Consider the following subgroup:

Hn = {g ∈ AutT | g(u) = 1∀u ∈ L≥n}
= {g ∈ AutT | g|u = 1∀u ∈ L≥n}

• Rooted automorphism belong to H1 ∼= Sym(m).
Then

AutT = Stab(n)⋊ Hn,

and therefore the map ψn can be extended to

ψn : AutT = Stab(n)⋊ Hn −→ (AutT × mn
· · · ×AutT )⋊ Hn

gh 7−→ (g|u)u∈Lnh.



Trees

The ψ maps:

We are particularly interested in the case n = 1:

ψ = ψ1 : AutT −→ (Aut T × m· · · ×Aut T )⋊ Sym(m)

g 7−→ (g|1, . . . , g|m)σ.

σ
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g|1 g|2 g|m



Trees

The ψ maps:

Let ψ(f) = (f1, . . . , fm)σ and ψ(g) = (g1, . . . , gm)τ be two
automorphisms of T . Then

ψ(fg) = (f1, . . . , fm)σ(g1, . . . , gm)τ

= (f1, . . . , fm)(g1, . . . , gm)
σ−1

στ

= (f1, . . . , fm)(gσ(1), . . . , gσ(m))στ

= (f1gσ(1), . . . , fmgσ(m))στ

In particular, if ψ(f) = (f1, . . . , fm) ∈ ψ(Stab(1)) and σ is a rooted
automorphism:

ψ(f σ) = (fσ−1(1), . . . , fσ−1(m))



Trees

The (first) Grigorchuk group
The (first) Grigorchuk is generated by three automorphisms of the
2-adic tree

ψ(a) = (1, 1)(1 2)
ψ(b) = (a, c)
ψ(c) = (a, d)
ψ(d) = (1, b)

a

... ... ... ...
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The (first) Grigorchuk group
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The (first) Grigorchuk group
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The (first) Grigorchuk group

d
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Trees

The (first) Grigorchuk group

Exercise
Let Γ = 〈a, b, c, d〉 be the (first) Grigorchuk group.

• What are the labels of a, b, c, d at the vertices 1, 2 and 22?
• What are the sections of a, b, c, d at the vertices ∅, 1, 2 and

21?
• Which is the order of a, b, c and d?
• Show that bc = cd = d and therefore 〈b, c, d〉 = C2 × C2.



Trees

The (first) Grigorchuk group

Exercise
Let Γ = 〈a, b, c, d〉 be the (first) Grigorchuk group.

• What are the labels of a, b, c, d at the vertices 1, 2 and 22?
• What are the sections of a, b, c, d at the vertices ∅, 1, 2 and

21?
• Which is the order of a, b, c and d?
• Show that bc = cd = d and therefore 〈b, c, d〉 = C2 × C2.

As a consequence, every nontrivial word in Γ can be written as an
alternating product of a and {b, c, d}.



Trees

The (first) Grigorchuk group

For any finitely generated group G with finite symmetric generating
set S define

ℓS = ℓ : G −→ N

via ℓ(g) = min{k | g = s1 . . . sk with si ∈ S}.

Lemma
Let g ∈ Γ and suppose that ψ(g) = (g1, g2)σ. Then

ℓ(gi) ≤
⌊ℓ(g) + 1

2
⌋

for i ∈ {1, 2}.
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The (first) Grigorchuk group

Exercise
Prove:

• ψ(aba) = ψ(ba) = (c, a),
• ψ(aca) = ψ(ca) = (d, a),
• ψ(ada) = ψ(da) = (b, 1),
• ψ(abac) = ψ(bac) = (c, a)(a, d) = (ca, ad), note that
ℓ(ca) = ℓ(ad) = 2.

Complete the proof of the lemma.
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The (first) Grigorchuk group

Lemma
Γ has a solvable world problem.

Proof.
Let w be a word in the generating set of Γ written as an
alternating product of a with elements of {b, c, d}. Does w have
an odd number of a’s?

• If yes, then w 6= 1 acts non-trivially at the root.
• If not, then the action at the root is trivial and so w

decomposes as (w1,w2), with w1 and w2 having length less
than the length of w. Repeat the steps now with w1 and w2.



Trees

The (first) Grigorchuk group

Lemma
Γ is a torsion group. In fact, each element of Γ has order a power
of 2.

Proof.
The general proof is a case by case analysis for which we direct the
reader to Topics in geometric group theory by Pierre de la Harpe.
For individual words, one can find the order using the length
reduction as below:

(ab)16

...
...

...
...

...
...

...
...

(ca)8

(ad)4

b2 b2

(da)4

b2 b2

(ac)8

(da)4

b2 b2

(ad)4

b2 b2



Trees

Self-similar:

Let G be a subgroup of AutT . We say that G is self-similar if
g|u ∈ G for all g ∈ G and u ∈ T .

• The (first) Grigorchuk group is self-similar.
Note that if G is self-similar, then we can define the group
homomorphism

ψu : StabG(u) −→ G
g 7−→ g|u,

and the injective group homomorphism

ψn : StabG(n) −→ G× mn
· · · ×G

g 7−→ (g|u)u∈Lu .



Trees

Fractal and level-transitive:

Let G be a self-similar subgroup of AutT . Then we say that G is
fractal if ψu(StabG(u)) = G for all u ∈ T .

• The (first) Grigorchuk group is fractal.
Let G be a subgroup of AutT . We say that G is level transitive or
spherically transitive if it acts transitively on every level. In other
words, if for every n ∈ N, and for any u and v in Ln, there exists
some g ∈ G such that g(u) = v.

• The (first) Grigorchuk group is level transitive.



Trees

(Weakly) regular branch:

Let G be a fractal level transitive subgroup of AutT and let K be a
non-trivial subgroup of StabG(1). We say that G is weakly regular
branch over K if

K× m· · · ×K ≤ ψ(K).

If furthermore K has finite index in G, we say that G is regular
branch over K.

• The Grigorchuk group is regular branch over
K = 〈(ab)2, (bda)2, (bad)2〉.
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The (first) Grigorchuk group

Exercise
Prove that Γ is regular branch over K = 〈(ab)2, (bda)2, (bad)2〉.

• Let us denote: x = (ab)2, y = (bda)2, z = (bad)2. Then

ψ(x) = (ca, ca) ψ(y) = (x, 1)ψ(z) = (1, x).

• Consider [y, x]:

ψ([y, x]) = ([x, ca], [1, ac]) = ((bad)2, 1) = (z, 1)

Similarly, by taking appropriate products of x, y and z, we see that
ψ(K) contains the elements {(y, 1), (1, y), (z, 1), (1, z)}. This
proves that ψ(K) ≥ K × K, and therefore Γ is regular branch over
K = 〈(ab)2, (bda)2(bad)2〉.
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The rigid stabilizers:

Let G be a subgroup of AutT , the rigid vertex stabilizer of a vertex
u in G, denoted by RstG(u), is the subgroup of G that consists of
those automorphisms of T that fix all vertices not having u as a
prefix.
In other words, an automorphism g is in the rigid vertex stabilizer
of u if g ∈ G and all labels of g outside Tu are equal to 1.
The rigid stabilizer of the n-th level is defined as:

RstG(n) = 〈RstG(u) | u ∈ Ln〉.

Equivalently, the n-th rigid stabiliser, is the largest subgroup of
StabG(n) such that

ψn(RstG(n)) = H1×
mn
· · · ×Hmn

for some Hi ≤ G.
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(Weakly) branch:

Let G be a fractal level transitive subgroup of AutT . We say that
G is weakly branch if RstG(n) is non-trivial for all n ∈ N.
If furthermore RstG(n) has finite index in G for all n ∈ N, we say
that G is branch.

• Note that if G is weakly regular branch (regular branch) then
it is weakly branch (branch).
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