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The goal of this seminar is to give a gentle introduction to the theory of right-angled
Artin groups, RAAGs for short. These groups span a wide range of groups from finitely
generated free groups to finitely generated free abelian groups, and posses a rich structure
of subgroups as well as nice algorithmic properties. The seminar will consist of five talks,
each of them devoted to different topics exposed in the survey papers [4] and [11]; or in
the book [8, Office hour 14].

Talk 1: The word and conjugacy problems in RAAGs. Give a general and brief
introduction to the theory of RAAGs (following, for example, [11]). Show that
there exist linear-time algorithms for the word and conjugacy problems in RAAGs
(as proved in [5]). In particular, introduce the notion of pilings and briefly explain
how these can be used to extend the result to an infinite family of subgroups of
RAAGs.

23.02.2022

Talk 2: Centralizers of RAAGs. Prove that centralizers of elements of RAAGs are them-
selves RAAGs. Read [8, Section 2.1] for a nice description of the result and follow
[12, Section 3] for its proof (this result was originally proved in [1] by Baudisch, but
the paper is in German and the notation is much more obscure). Devote also some
time to talk about the result in [2] concerning 2-generator subgroups of RAAGs.

02.03.2022

Talk 3: Special subgroups of RAAGs. Following [9], give sufficient and necessary con-
ditions for every subgroup of RAAGs to be RAAGs. Talk also about the charac-
terisation given in [10] of the RAAGs all of whose subgroups are coherent. A nice
overview of the topic can be found in [8, Section 3].

09.03.2022

Talk 4: Coxeter groups and the linearity of RAAGs. Introduce the notion of Cox-
eter group and give some basic examples (you can find them, for instance, in
[3, Chapter IV, Section 1.3]). Define Coxeter matrices and Coxeter graphs (see
[3, Chapter IV, Section 1.9]), and, with these notions, sketch the proof in [3, Chapter
V, Section 4.4, Corollary 2] for the linearity of Coxeter groups.

RAAGs can be realized as quotients of Coxeter groups. Following [7], show that
RAAGs actually embed as finite index subgroups of Coxeter groups. This, in par-
ticular, shows that RAAGs are linear.

14.03.2022

Talk 5: Tits’ conjecture. It was conjectured by Tits that the subgroup generated by the
squares of the generators of an arbitrary Artin group is always a RAAG. This was
shown to be true by Crisp and Paris in 2001 [6]. Sketch the proof for this result
omitting, if necessary, the details in Sections 4 and 5.

21.03.2022
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