Tropische Geometrie – Blatt 8

Prof. Immanuel Halupczok M.Sc. Saba Aliyari

Aufgabe 1 (2 Punkte):

Zeigen Sie, dass die Vereinigung von zwei Varietäten $V_1, V_2 \subset \mathbb{K}^n$ wieder eine Varietät ist.

Hinweis: Betrachten Sie (als Aufwärmübung) erst den Fall, dass V_1 und V_2 jeweils durch ein Polynom definiert werden.

Aufgabe 2 (2 Punkte):

Sei $f \in \mathbb{K}[\underline{x}]$ ein Polynom. Zeigen Sie: Ist die Varietät V(f) irreduzibel, so ist auch das Polynom f irreduzibel. (Bemerkung: Die Umkehrung gilt auch.)

Aufgabe 3 (4+1+1 Punkte):

Seien $f, g \in \mathbb{R}_{\infty}[x_1, \dots, x_n]$ tropische Polynome. Zur Erinnerung: V(f) ist die Menge der tropischen Wurzeln von f. Zeigen Sie:

- (a) $V(f \odot g) = V(f) \cup V(g)$.
- (b) Ist $g^n = f$, so ist V(g) = V(f).
- (c) Folgern Sie: Ist $f \in \mathbb{K}[x_1, \dots, x_n]$, so ist $\operatorname{trop}(V(f)) = V(\operatorname{trop} f)$.