Zahlentheorie – Blatt 3 Abgabe am 9.5.2017 bis 10:30 Uhr

1 2 3 4 Σ

Name und Matr-Nr.

Bitte drucken Sie diese Seite aus und verwenden Sie sie als Deckblatt für Ihre Lösungen.

Wie üblich sind alle Antworten zu begründen/beweisen.

Aufgabe 1 (4 Punkte):

Seien $m \ge 2$ und $z \in \mathbb{R}$ gegeben, und sei f die zahlentheoretische Funktion mit f(1) = 1, f(m) = z und f(n) = 0 für $n \notin \{1, m\}$.

- (a) Sei g das Faltungsinverse von f. Bestimmen Sie g.
- (b) Unter welchen Bedingungen an m und/oder z konvergiert $\sum_n g(n)$? Wogegen konvergiert die Summe? Passt dieses Ergebnis zu Lemma 1.4.11 aus der Vorlesung?

Aufgabe 2 (6 Punkte):

Eine zahlentheoretische Funktion f heißt vollständig multiplikativ wenn f(1) = 1 ist und für alle $m, n \in \mathbb{N}$ gilt: $f(m \cdot n) = f(m) \cdot f(n)$. Zeigen Sie:

- (a) Sind f, g und h zahlentheoretische Funktionen, wobei h vollständig multiplikativ ist, so gilt $(f*g) \cdot h = (f \cdot h) * (g \cdot h)$. (Hierbei ist $f_1 \cdot f_2$ die punktweise Multiplikation, d. h. $(f_1 \cdot f_2)(n) = f_1(n) \cdot f_2(n)$.)
- (b) Ist f vollständig multiplikativ, so ist $f \cdot \mu$ das Faltungsinverse von f.
- (c) Sind f und g vollständig multiplikative zahlentheoretische Funktionen und gilt f(p) = g(p) für alle Primzahlen p, so ist schon f = g.

Aufgabe 3 (4 Punkte):

Für $n \in \mathbb{N}$ definiert man $\sigma(n)$ als die Summe aller Teiler von n. Zeigen Sie:

$$\sum_{n \le x} \sigma(n) = \frac{\pi^2}{12} x^2 + o(x^2).$$

Hinweis: Gehen Sie ähnlich wie bei den Beweisen der Sätze 1.4.2 und 1.4.3 aus der Vorlesung vor. Dabei ist es hilfreich, die Summe der Teiler von n nicht als $\sum_{d|n} d$ zu schreiben, sondern als $\sum_{d|n} \frac{n}{d}$.

Aufgabe 4 (2 Punkte):

Wir betrachten die (konstanten) Funktionen $f_n(x) := n$ und die Funktion $g(x) := \sum_{n \le x} f_n(n)$.

Für natürliche m haben wir $g(m) = \sum_{n \le m} n = \frac{m(m+1)}{2} \ge \frac{1}{2}m^2$.

Andererseits ist $f_n(x) = O(1)$. Also gilt, da die Summe in der Definition von g aus $\lfloor x \rfloor$ Summanden besteht, $g(x) = |x| \cdot O(1) = O(x)$.

Wir haben also gezeigt: $\frac{1}{2}m^2 = O(m)$.

Ist dieses Ergebnis richtig? Wenn nein, wo liegt dann der Fehler in der Argumentation? Erläutern Sie.