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Introduction

Inspired by the Hasse-Weil zeta function of an algebraic variety over
a finite field, Artin and Mazur defined the Artin - Mazur zeta
function for an arbitrary map f : X — X of a topological space X:

— F(f"
Fe¢(z) :=exp Z %z”
n=1

where F(f") is the number of isolated fixed points of f". Artin and
Mazur showed that for a dense set of the space of smooth maps of
a compact smooth manifold into itself the Artin-Mazur zeta
function F¢(z) has a positive radius of convergence.
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Later Manning proved the rationality of the Artin - Mazur zeta
function for diffeomorphisms of a smooth compact manifold
satisfying Smale axiom A. On the other hand there exist maps for
which Artin-Mazur zeta function is transcendental. The
Artin-Mazur zeta function was historically the first dynamical zeta
function for discrete dynamical system. The next dynamical zeta
function was defined by Smale and Milnor . This is the Lefschetz
zeta function of discrete dynamical system:

L L(fF"
Le(z) :=exp Z (n)z” ,
n=1
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where

dim X
L(F) =3 (~1) [
k=0

£t Hi(X: Q) = Hi(X: Q)|
is the Lefschetz number of the iterate " of f.
given by the formula:

The Lefschetz zeta function is always a rational function of z and is
dim X

k=0

«0O0>» «Fr «E» « 3 Q>
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We apply a simple linear algebra calculation connecting a trace and
a determinant:

exp (i wB n)

1

o Bn
= exp trZTZ"
n=1

= exp (tr(— log(1 — Bz)))
1
det(1 — Bz)’

This implies a formula above connecting a graded trace and a
graded determinant.
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There is another way of counting the fixed points of f” - according
to Nielsen and Reidemeister. This is counting of fixed points of a
map in the presence of the foundamental group of a space.

| would like to start from the definitions.
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Nielsen - Reidemeister fixed point theory

We assume everywhere X to be a connected, compact polyhedron
and f : X — X to be a continuous map. Let p: X — X be the
universal cover of X and f : X — X a lifting of f, i.e., pof = fop.

Definition
Two liftings f/ and  of f are said to be conjugate if there exists

covering translation v € I = 71 (X), such that f/ =y o f oy~ L.
Lifting classes are equivalence classes by conjugacy. Notation:

[fl={vofoytyer}

The subset p(Fix()) C Fix(f) is called the fixed peint class of f
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Nielsen - Reidemeister fixed point theory

determined by the lifting class [f].

Lemma

(1) Fix(f) = Uzp(Fix( N))

(2) p(Fix(f)) = (F'X(f’)) /f[f] [F].
(3) p(Fix(F)) N p(Fix(7)) = 0 if [F] # ["].

Our definition of a fixed point class is via the universal covering
space. It essentially says: two fixed point of f are in the same class
iff there is a lifting f of f having fixed points above both of them.
There is another way of saying this, which does not use covering
space explicitly, hence is very useful in identifying fixed point
classes. Two fixed points xg and x; of f belong to the same fixed

point class iff there is a path ¢ from xg to x; such that ¢ & fo ¢ {
A. Fel'shtyn University of Szczecin
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Nielsen - Reidemeister fixed point theory
homotopy relative endpoints - "Nielsen disk"). This fact can be
considered as an equivalent definition(geometrical) of a non-empty
fixed point class. Every map f has only finitely many non-empty
fixed point classes, each a compact subset of X.
Examples: a map of degree d of the circle S!, involution on torus
T2,
A fixed point class is called essential if its index is nonzero. The
number of lifting classes of f (and hence the number of all fixed
point classes) is called the Reidemeister number of f, denoted by
R(f). This is a positive integer or infinity. The number of essential
fixed point classes is called the Nielsen number of f, denoted by
N(f) .
The Nielsen number is always finite. R(f) and N(f) are homotopy

A. Fel'shtyn University of Szczecin

Dynamical zeta functions



Introduction Reidemeister zeta function Reidemeister torsion R — infinity groups Dynamic representation theory zeta
[ ] o] o]
o] [e]e) o]
o]

(e]

00000000

Nielsen - Reidemeister fixed point theory
invariants. In the category of compact, connected polyhedra the
Nielsen number of a map is, apart from in certain exceptional cases,
equal to the least number of fixed points of maps with the same
homotopy type as f.

Let G be a group and ¢ : G — G an endomorphism. Two elements
a, 3 € G are said to be ¢-conjugate iff there exists v € G such
that 8 = yag(y) 1. Reidemeister classes (twisted conjugacy
classes, ¢-conjugacy classes) of an automorphism (endomorphism)
¢ of a (countable discrete) group G are the classes {g} of the
equivalence relation

g~xgp(x), gxeG.

The number of them is the Reidemeister number R(¢). For ¢ = Id
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Nielsen - Reidemeister fixed point theory
we have the usual conjugacy classes.
Reidemeister bijection: Reidemeister number of continuous map f
coincides with Reidemeister number (the number of twisted
conjugacy classes) of induced endomorphism f, of the fundamental
group of X: R(f) = R(f.).

Taking a dynamical point of view, we consider the iterates of f and
¢, and define following zeta functions connected with the
Nielsen-Reidemeister fixed point theory. The Reidemeister zeta
functions of  and ¢ and the Nielsen zeta function of f are defined
as power series:

A. Fel'shtyn University of Szczecin
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The investigation and computation of the Reidemeister zeta
function Ry(z)of a group endomorphism ¢ is an algebraic ground of

the computation and investigation of zeta functions R(z) and
Nf(Z).
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Nielsen - Reidemeister fixed point theory
The Reidemeister bijection implies that Reidemeister zeta function
of continuous map f coincides with Reidemeister zeta function of
induced endomorphism f, of the fundamental group of X:
R¢(z) = Re.(2).
Whenever we mention the Reidemeister zeta function, we shall
assume that it is well-defined and so R(f") < oo and R(¢") < oo
for all n > 0. There are spaces and maps for which R¢(z) is not
defined. The zeta functions R¢(z) and N¢(z) are homotopy
invariants. The function N¢(z) has a positive radius of convergence
for any continuous map f. The above zeta functions are directly
analogous to the Lefschetz zeta function of a map. We start with
an example that shows how different can be the Nielsen, the
Reidemeister and the Lefschetz zeta functions.
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Nielsen - Reidemeister fixed point theory

Let f : S?V §* — 52V §% to be a continuous map of the bouquet
of spheres such that the restriction f|gs = idss and the degree of
the restriction f|s2 : S — S? equal to —2. Then L(f) = 0, hence
N(f) = 0 since S? V S* is simply connected. For k > 1 we have
L(fK) =2+ (—2)k # 0, therefore N(f¥) = 1. R(f*) =1 for all

k > 1 since S? v S* is simply connected. From this we have by
direct calculation that

N¢(z) = exp(—z)-i; Re(2) = : . L(z) = (1-— 2)21(1 +2z2)°

1—
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Topological entropy and the radius of convergence of the Nielsen zeta function
Hence N¢(z) is a meromorphic function, and R¢(z) and L¢(z) are
rational and different.

The following main problem was investigated: for which spaces and
maps and for which groups and endomorphisms are the Nielsen and
Reidemeister zeta functions rational functions? Are these functions
algebraic functions?

The knowledge that a zeta function is a rational function is
important because it shows that the infinite sequence of coefficients
of the corresponding power series is closely interconnected, and is
given by the finite set of zeros and poles of the zeta function.
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The most widely used measure for the complexity of a dynamical
system is the topological entropy. For the convenience of the

reader, we include its definition.
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Topological entropy and the radius of convergence of the Nielsen zeta function
Let f : X — X be a self-map of a compact metric space. For given
e>0and neN, asubset E C X is said to be (n, €)-separated
under f if for each pair x # y in E there is 0 < i < n such that
d(fi(x), fi(y)) > e. Let s,(e, f) denote the largest cardinality of
any (n, €)-separated subset E under f. Thus s,(¢, f) is the greatest
number of orbit segments x, f(x),---, f"~1(x) of length n that can
be distinguished one from another provided we can only distinguish
between points of X that are at least ¢ apart. Now let

h(f,€) :=lim sup% log sn(e, f)

h(f) := limsup h(f, €).
e—0
A. Fel'shtyn University of Szczecin
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Topological entropy and the radius of convergence of the Nielsen zeta function

The number 0 < h(f) < oo, which to be independent of the metric
d used, is called the topological entropy of f. If h(f,€e) > O then,
up to resolution € > 0, the number s,(¢, f) of distinguishable orbit
segments of length n grows exponentially with n. So h(f) measures
the growth rate in n of the number of orbit segments of length n
with arbitrarily fine resolution.

For a "hyperbolic"( Axiom A) diffeomorphism of a manifold
topological entropy

h(F) = lim sup ~ - log #Fix(F"),
n n

so h(f) measures the growth rate of the number of periodic points.
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Topological entropy and the radius of convergence of the Nielsen zeta function
A basic relation between topological entropy h(f) and Nielsen
numbers was found by N. lvanov-1982. We present here a very
short proof of the Ivanov’s inequality.

Lemma

Let f be a continuous map on a compact connected polyhedron X.
Then

h(f) > lim sup% -log N(f") := log N>°(f)

Proof: Let ¢ be such that every loop in X of diameter < 2§ is
contractible. Let ¢ > 0 be a smaller number such that
d(f(x),f(y)) < 0 whenever d(x,y) < 2¢. Let-E, G X be a set

A. Fel'shtyn University of Szczecin
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Topological entropy and the radius of convergence of the Nielsen zeta function
consisting of one point from each essential fixed point class of .
Thus |E,| = N(f"). By the definition of h(f), it suffices to show
that E, is (n, €)-separated. Suppose it is not so. Then there would
be two points x # y € E, such that d(f/(x), f/(y)) < e for
0 < i < n hence for all i > 0. Pick a path ¢; from f/(x) to fi(y) of
diameter < 2¢ for 0 < i < n and let ¢, = ¢y. By the choice of ¢
and ¢, foc =~ ¢jq forall i, so f" o ¢y >~ ¢, = ¢p. This means x, y
in the same fixed point class of f”, contradicting the construction
of E,.
This inequality is remarkable in that it does not require smoothness
of the map and provides a common lower bound for the topological
entropy of all maps in a homotopy class.

A. Fel'shtyn University of Szczecin
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We denote by R the radius of convergence of the Nielsen zeta
homotopy type as f.

function N¢(z). Let h = inf h(g) over all maps g of the same
For a continuous map of a compact polyhedron X into itself,

R > exp(—h) > 0.
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Topological entropy and the radius of convergence of the Nielsen zeta function

Proof.

The inequality R > exp(—h) follows from the previous lemma, the
Cauchy-Hadamard formula, and the homotopy invariance of the
radius R of the Nielsen zeta function N¢(z). We consider a smooth
compact manifold M which is a regular neighborhood of X and a
smooth map g : M — M of the same homotopy type as f. As is
known, the entropy h(g) is finite. Thus

exp(—h) > exp(—h(g)) > 0. O

A. Fel'shtyn University of Szczecin
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Nielsen zeta function of a periodic map

Nielsen zeta function of a periodic map

Sometimes one can answer above questions without directly
calculating the Nielsen numbers N(f"), but using the connection
between Nielsen numbers of iterates. We denote N(f") by N,.We
shall say that f : X — X is a periodic map of period m, if f™ is the
identity map idx : X — X. Let p(d),d € N, be the Mdbius
function of number theory. As is known, it is given by the following
equations: p(d) = 0 if d is divisible by a square different from one ;
p(d) = (—1)% if d is not divisible by a square different from one ,
where k denotes the number of prime divisors of d; u(1) = 1.

A. Fel'shtyn University of Szczecin
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Nielsen zeta function of a periodic map

Theorem ( F. - V. Pilyugina, 1985)

Let f be a periodic map of least period m of the connected
compact polyhedron X . Then the Nielsen zeta function is equal to

Ni() = ] {fa - 297,
dlm

where the product is taken over all divisors d of the period m, and
P(d) is the integer P(d) = > 4 |4 #(d1)Na|d, -

A. Fel'shtyn University of Szczecin
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Nielsen zeta function of a periodic map

Proof. Since f™ = id, for each j, N = Np,4;. Since (k,m) =1,
there exist positive integers t and g such that kt = mqg + 1. So
(FK)t = fkt = fmatl — fmaf — (fmM)9f = f Consequently,

N(f) = N(f¥). For an arbitrary period m one can prove completely
analogously that Ny = Ng;, if (i,m/d) = 1, where d is a divisor of
m. Using these series of equal Nielsen numbers, one can regroup
the terms of the series in the exponential of the Nielsen zeta
function so as to get logarithmic functions by adding and
subtracting missing terms with necessary coefficient. The same
argument shows that N(f9) = N(f9) if (i,m/d) = 1 where d
divisor m. Using these series of equal numbers we obtain the result
by direct calculation

A. Fel'shtyn University of Szczecin
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N¢(z)

= exp iN(fi)zi

[ee) zdi
- Z#'T)

= exp Z # - log(1 — zd))

dlm
= H /(1 — zd)=P(d)
dim
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where the integers P(d) are calculated recursively by the formula

P(d)=Nyg— > P(d).

dh|didy£d
Moreover, if the last formula is rewritten in the form

Ng=>_ P(d)

dy|d
theory, then

and one uses the Mobius Inversion law for real function in number

P(d) = Zﬂ(dl) “Ngd,-
d]_d «40>» «Fr» « E>»

«E»
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Reidemeister zeta function

In this section we study the problem of rationality of the
Reidemeister zeta function. The first group of related problems
includes a study of validity of the TBFT (twisted
Burnside-Frobenius theorem (or theory)) for different classes of
groups and a proof of the Gauss congruences for the Reidemeister
numbers of iterations. TBFT says that the Reidemeister number
R(¢) of automorphism ¢ of a group G is equal to the number of
finite—dimeniional fixed points of the induced map ¢ on the unitary
dual space G if R(¢) < oco. TBFT was proved for automorphisms
of abelian, finite, compact, abelian-by-finite and polycyclic-by-finite

A. Fel'shtyn University of Szczecin
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Definition (Unitary Dual)

Denote by G the set of equivalence classes of unitary irreducible
representations of G and by G its part corresponding to
finite-dimensional representations. The class of p in G we will
denote by [p]. An automorphism ¢ of G induces a bijection

¢ : G — G by the formula [¢(p)] := [p o ¢].

If G is a finite group and ¢ = Id then TBFT becomes the classical
Burnside-Frobenius theorem: the number of classes of irreducible
representations of finite group G is equal to the number of

conjugacy classes of elements of G.
A. Fel'shtyn University of Szczecin
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isomorphism ¢ = —Id we have

For the simplest infinite group G = Z and its unique non-trivial

m~ k+m—(—k)=m+ 2k,

Y k
Thus even and odd numbers form 2 Reidemeister classes.

«0O0>» «Fr «E» « 3 Q>



Introduction Reidemeister zeta function Reidemeister torsion R — infinity groups Dynamic representation theory zeta

[e] [e] [e]
[e] (o] [e]
[e] [e]

[e]

(o]

[e]

[e]

[e]

[e]

[e]

The dual object can be identified with the unit circle S'  C as
follows: each (one dimensional) irreducible representation is defined
at m € Z as multiplication by (e’®)™ = e’®™. In this way, e’® € S*
corresponds to this representation (denote by p,). Then

qg(pa)(m) = (pa)(—m) = (e/*)™™ = (e='*)™. Thus, ¢ coincides
with the complex conjugation and has on S exactly two fixed
points: £1. Hence, F(¢) =2 = R(¢). This example shows, in
particular, that even for “simple” infinite groups the number of
twisted conjugacy classes can be finite (in contrast with the
ordinary classes).

A. Fel'shtyn University of Szczecin
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Let ¢-class functions be functions, which are constant on
Reidemeister classes of ¢, i.e. twisted invariant functions:
gf¢(gt) = f. Evidently, R(¢) is equal to the dimension of the
space of such functions. On the other hand, for the L?(G) we have
the Peter-Weyl decomposition:

1*(G)=PEndV,,  End V, = Mat(dimp,C),
peG
which respects the left and right G-actions (we have written L?(G),
but this is C[G] = C*(G) because the group is finite). ~ _ -



Thus

R(¢) = dim{space of twisted invariant elements of L2(G)} =
> dim T,
[rleG

T, = {F € End V,|F = p(g)Fp(é(g™") for all g € G}
[rleG

= Z dim{space of intertwinning operators of p — po ¢} =

-y { Lifp~pogp
€G

0, if pfpoyp

= #Fix(¢).
«O>» «Fr «E=>»
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Finite groups

We therefore have [ F. - R.Hill, 1994]:
R(¢) = # Fix (¢3 e G) (2)

The following nice way of calculation is known (Brauer 7). Consider
the natural action ¢* on class-functions (for usual conjugacy
classes). Then ¢* = (E under the identification of
Burnside-Frobenius. The trace of this operator should be the same
in the basis of class-functions and in the basis of characters. In
both cases the operator acts by transpositions of basic elements,
thus, its trace is equal to the number of fixed element. Hence

~.

#Fix(¢) = the number of ¢-invariant usual conjugacy classes. The

TBFT in finite group case implies R(¢) = #Fix((qg). Hence,
A. Fel'shtyn University of Szczecin

Dynamical zeta functions



R(¢) = the number of ¢-invariant usual classes. The above

example with Z shows that this is not correct for infinite groups.
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Abelian groups and Pontryagin Duality

Abelian groups

Let G be a locally compact abelian topological group. We write G
for the set of continuous homomorphisms from G to the circle
U(1l) ={z € C:|z| = 1}. This is a group with pointwise
multiplication. We call G the Pontryagin dual of G. When we
equip G with the compact-open topology it becomes a locally
compact abelian topological group. The dual of the dual of G is
canonically isomorphic to G.

A continuous endomorphism f : G — G gives rise to a continuous
endomorphism f:G — G defined by

)?(X) :=xof.

A. Fel'shtyn University of Szczecin
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Abelian groups and Pontryagin Duality
If G is a finitely generated free abelian group then a homomorphism
X : G — U(1) is completely determined by its values on a basis of
G, and these values may be chosen arbitrarily. The dual of G is
thus a torus whose dimension is equal to the rank of G.
If G = Z/nZ then the elements of G are of the form

2miyx
X—> € n

with y € {1,2,...,n}. A cyclic group is therefore (uncanonically)
isomorphic to itself.

The dual of G ® G, is canonically isomorphic to Gy @ Gy. From
this we see that any finite abelian group is (non-canonically)
isomorphic to its own Pontryagin dual group, and that the dual of
any finitely generated discrete abelian group is-the direct sum of a

A. Fel'shtyn University of Szczecin
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Abelian groups and Pontryagin Duality
Torus and a finite group.
We shall require the following statement:

Proposition

Let ¢ : G — G be an endomorphism of an abelian group G. Then
the kernel ker [(5 .G > @] is canonically isomorphic to the
Pontryagin dual of Coker ¢.

PROOF. We construct the isomorphism explicitly. Let x be in the
dual of Coker (¢ : G — G). In that case y is a homomorphism

x: G/im(¢) — U(1).
A. Fel'shtyn University of Szczecin
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Abelian groups and Pontryagin Duality
There is therefore an induced map

X:G— U(1)

which is trivial on im(¢).
This means that X o ¢ is trivial, or in other words ¢() is the
identity element of G. We therefore have Y € ker(¢).

If on the other hand we begin with X € ker(¢), then it follows that
X is trivial on im ¢, and so ¥ induces a homomorphism

X :G/im(¢p) — U(1)

and  is then in the dual of Coker ¢. The correspondence x < Y
is clearly a bijection.
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By Proposition above, the Pontrjagin dual of the cokernel of
(1—¢): G — G is canoically isomorphic to the kernel of the dual

map (1 — ¢) : G — G. Since Coker (1 — ¢) is finite, we have
#Coker (1 — ¢) = #Coker (1 — ¢) = #ker (1 — ¢).

The map 1/—\¢ is eAquaAI to iA— . Its kernel is thus the set of fixed
points of the map ¢ : G — G. We therefore have [ F. - R.Hill,
1994):

R(¢) = # Fix (Js G- G) (3)
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Polycyclic groups groups
Polycyclic groups

Let G’ =[G, G] be the commutator subgroup or derived group of
G, i.e. the subgroup generated by commutators. G’ is invariant
under any homomorphism, in particular it is normal. It is the
smallest normal subgroup of G with an abelian factor group.
Denoting GO .= G, GO .= ¢, ¢ .= (G(”_l))’, n > 2, one
obtains derived series of G:

G=G6>56¢>6@0>5...56M" > ... (4)

If G(") = e for some value n, i.e. the series (4) stabilizes by trivial
group, then the group G is solvable.
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Polycyclic groups groups
A solvable group is a polycyclic group, if it has a derived series with
all G(" finitely generated and all factors G(" /G("+1) are cyclic. A
group is said to have max if every its subgroup is finitely generated.
It is known that a solvable group has max if and only if it is
polycyclic. A polycyclic group is virtually poly-Z.
In fact, the TBFT for group is closely related to a generalization of
the following well-known notion.

Definition
A group G is conjugacy separable if any pair g, h of non-conjugate
elements of G are non-conjugate in some finite quotient of G.

It was proved by Remeslenikov and Formanek that

polycyclic-by-finite( or almost polycyclic) groups are conjugacy
A. Fel'shtyn University of Szczecin
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Polycyclic groups groups
separable (see Daniel Segal book).
We can introduce the following notion, which coincides with the
previous definition in the case ¢ = Id.

Definition
A group G is ¢-conjugacy separable with respect to an
automorphism ¢ : G — G if any pair g, h of non-¢-conjugate

elements of G are non-¢-conjugate in some finite quotient of G
respecting ¢.
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Polycyclic groups groups

Lemma

Let p be a finite dimensional irreducible representation of G on V,,
and ¢ : G — G is an automorphism.

1). There exists a twisted invariant function w : G — C being a
matrix coefficient of p if and only if d)[p] = [p].

2). In this case such w is unique up to scaling.

3). If we have several distinct qb fixed representations, then the
correspondent twisted invariant functions are linearly independent.

Function w is defined by the formula

w: g+ Tr(S o p(g)), (5)
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Polycyclic groups groups
where S is an intertwining operator between p and p o :

p(p(x))S = Sp(x)  forany x € G.

In particular, TBFT is true for ¢ if and only if these matrix
coefficients form a base of the space of ¢-class functions.
One gets the following statement.

Theorem ( F. - E. Troitsky, 2007)

Suppose, R(¢) < oo. If a group G is ¢-conjugacy separable then
TBFT is true for G.

Proof: Indeed, let Fjj : G — Kj; distinguish ith and jth ¢-conjugacy
classes, where Kj; are finite groups, i,j = 1,...,R(¢). Let
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Polycyclic groups groups
F:G— @Ky F(g)= Zi’j Fij(g), be the diagonal mapping and
K its image. Then the map F : G — K gives TBFT. Indeed, each
¢~class function f on G is a linear combination of functionals
coming from some finite collection {p;} of fixed by the map o
elements of Gr. These representations p1, ..., ps are in fact
representations of the form m; o F, where 7; are irreducible
representations of the finite group K and F : G — K, as above.
The following construction relates ¢-conjugacy classes and
some conjugacy classes of another group.

Consider the action of Z on G, i.e. a homomorphism Z — Aut(G),
n— ¢". Let I be a corresponding semi-direct product
N=G xZ:

A. Fel'shtyn University of Szczecin
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M=<G,t|tgt ' =9(g) > (6)

in terms of generators and relations, where t is a generator of Z.
The group G is a normal subgroup of I'. As a set, [ has the form

M= lUpezG-t", (7)

where G - t" is the coset by G containing t".

Lemma
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Polycyclic groups groups

Two elements x,y of G are ¢-conjugate iff xt and yt are conjugate
in the usual sense in T'. Therefore g — g - t is a bijection from the

set of ¢-conjugacy classes of G onto the set of conjugacy classes of
I contained in G - t.

Proof. If x and y are ¢-conjugate then there is a g € G such that
gx = y#(g). This implies gx = ytgt~! and therefore g(xt) = (yt)g
so xt and yt are conjugate in the usual sense in . Conversely,
suppose xt and yt are conjugate in . Then there isa gt" € I’

with gt"xt = ytgt". From the relation txt~! = ¢(x) we obtain

g8 ()t = yo(g)t"* and therefore g (x) = yo(g).

Hence, y and ¢"(x) are ¢-conjugate. Thus,

y and x are ¢-conjugate, because x and ¢(x) are always
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Polycyclic groups groups

¢-conjugate: ¢(x) = x"1x¢(x).
Theorem

Let F : T — K be a morphism onto a finite group K which
separates two conjugacy classes of I in G - t. Then the restriction
FG := Flg : G — Im(F|g) separates the corresponding
¢-conjugacy classes in G.

Proof: First let us remark that Ker(F¢) is ¢-invariant. Indeed,
suppose Fg(g) = F(g) = e. Then

Fe(o(g)) = F(¢(g)) = Fltgt™) = F(t)F(t) " = e

(the kernel of F is a normal subgroup).

A. Fel'shtyn University of Szczecin
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classes. Then

Let gt and gt be some representatives of the mentioned conjugacy
F((ht")gt(ht™)™1) # F(gt), Vhe G, neZ,
F(ht"gt) # F(gtht™), Vhe G, neZ,
F(ho"(g)t™"h) # F(go(h)t™Y),

Vhe G, neZ,
F(ho"(g)) # F(gao(h)),

Vhe G, neZ,
. . —1 ~
in particular, F(hgp(h™)) # F(g) Yh € G. o o
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Polycyclic groups groups

Theorem ( F. - E. Troitsky, 2007)

Let G be a polycyclic-by-finite group. Suppose, R(¢) < oco. Then
TBFT is true for G i.e.

R(g) = #Fix ($: & — &) (8)

Proof: The class of polycyclic-by-finite groups is closed under
taking semidirect products by Z. Indeed, let G be an
polycyclic-by-finite group. Then there exists a characteristic
(polycyclic) subgroup P of finite index in G. Hence, P x Z is a

polycyclic normal group of G x Z of the same-finite index.
A. Fel'shtyn University of Szczecin
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Polycyclic-by-finite groups are conjugacy separable . It remains to
apply theorem for ¢-conjugacy separable group above.

«O>» «Fr «E=>»
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In dynamical context we study Reidemeister numbers of iterations.
Nice analytical properties of the Reidemeister zeta function indicate
that the Reidemeister numbers R(¢") are closely interconnected.

The manifestation of this are Gauss congruences for Reidemeister
numbers.
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Gauss congruences: an application of TBFT

More precisely, let ;1 be the M&bius function:

1, ifd =1
(—1)k, if d —is a product of

k distinct prime numbers;
0, if d is not square free.

pu(d) =

In number theory, the following Gauss congruence for integers holds:

Zu(d) a”?=0 modn
d|n

for any integer a and any natural number n.
In the case of a prime power n = p", the Gauss congruences turn

into the Euler congruences. Indeed, for n = p"-the Mébius function
A. Fel'shtyn University of Szczecin
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Gauss congruences: an application of TBFT

p(n/d) = p(p"/d) is different from zero only in two cases: when
d = p" and when d = p"~1. Therefore, from the Gauss congruence
we obtain the Euler congruence

r r
a” =a° mod p”

This congruence is equivalent to the following classical Euler's
theorem:

2?(M =1 mod n

where (a,n) = 1.
These congruences have been generalized from integers a to some

other mathematical invariants such as the traces ofsall integer
A. Fel'shtyn University of Szczecin
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matrices A and the Lefschetz numbers of iterations of a map:

Zu(d) tr(A"9) =0 mod n,
d|n

tr(AP") = tr(AP ') mod p'.

(10)
> u(d) L(Ff?) =0 mod n
d|n

These congruences are now also called the Dold congruences. It is
equivalent.

(bL)
shown that the above congruences (9), (10) and (DL) are
«0O0>» «Fr «=» « > Q>
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Gauss congruences: an application of TBFT

Suppose, the TBFT holds for a group. Then, using congruences for
fixed points of iterations of the dual map one can obtain the Gauss
congruences for Reidemeister numbers of iterations

Theorem

Let G be a polycyclic-by-finite group. Suppose, R(¢") < oo for all
n. Then we have Gauss congruences for Reidemeister numbers of
iterations:

ZM R(¢™?) =0 mod n, (11)
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Proof. we have following evident consequence of TBFT:

R(¢") = # Fix(¢"|a.f) = _d|n Pd, where Py denote the number of
periodic points of QAS on ?;f of least period d. Applying the Mébius’
inversion formula we obtain P, = 3", u(d) - R(¢™9). But number

Py is always divisible by n, because P; is exactly n times the
number of orbits of ¢ of length n.

«0O0>» «Fr «=» « Q>
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Rationality of the Reidemeister zeta function of endomorphisms of finitely generated Abelian groups

Rationality of the Reidemeister zeta function of
endomorphisms of finitely generated Abelian groups

For a finitely generated Abelian group G we define the finite
subgroup G"*¢ to be the subgroup of torsion elements of G. We
denote the quotient G := G/Gfi”ite. The group G*° is torsion
free. Since the image of any torsion element by a homomorphism
must be a torsion element, the function ¢ : G — G induces maps

¢finite : Gfinite N Gfinite7 52500 - G® —s G
The dual group of G*° is a torus whose dimension is the rank of G.

This is canonically a closed subgroup of G. We shall denote it Gp.
The quotient G/Go is canonically isomorphic to the dual of GFinite,
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Rationality of the Reidemeister zeta function of endomorphisms of finitely generated Abelian groups

We shaIl calI a torus G; periodic if there is an iteration ¢° such that
qﬁs( ;) C G;. If this is the case, then the map qﬁs .G — G is a
translatlon of the map ¢° : Gy — Go and has the same number of
fixed points as this map. If $°(G;) ¢ G; then ¢° has no fixed points
in G;. The map on the torus

éo:@o%@o

lifts to a linear map F of the universal cover, which is in this case
the Lie algebra of G. It is well known that Lefschetz number of ¢q
equals det(F — Id).

Theorem ( F. - R.Hill, 1994)
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Rationality of the Reidemeister zeta function of endomorphisms of finitely generated Abelian groups

Let ¢ : G — G be an endomorphism of a finitely generated Abelian
group. Then we have the following R(¢") =| L(¢") |, where L(¢")
is the Lefschetz number of ¢ thought of as a self-map of the
topological space G. From this it follows that zeta functon R4(z) is
rational function and is equal to:

Ry(z) = Ly(oz))", (12)
where 0 = (—1)P where p is the number of real eingevalues
A € Spec(F) such that A\ < —1 and r is the number of real
eingevalues \ € Spec(F) such that | A |> 1. If G is finite abelian
group then this reduces to R(¢") = L(¢") and Rs(z) = Ly(2).
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Rationality of the Reidemeister zeta function of endomorphisms of finitely generated Abelian groups
Proof. If G is finite abelian then G is a discrete finite set, so the
number of fixed points is equal to the Lefschetz number. This
finishes the proof in the case that G is finite.
If G a finitely generated Abelian group it is only necessary to check
that the number of fixed points of " is equal to the absolute value
of its Lefschetz number. We assume without loss of generality that
n = 1. We are assuming that R(¢) is finite, so the fixed points of ¢
form a discrete set. We therefore have L(¢) = > oxeFixd ind(¢, x).

Since ¢ is a group endomorphism, the zero element 0 € G is always
fixed. Let x be any fixed point of ¢. We then have a commutative
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Rationality of the Reidemeister zeta function of endomorphisms of finitely generated Abelian groups

diagram )
g 6 %5 ¢ ¢
t ot 11
g+x G i> G g+ x

in which the vertical functions are translations on G by x. Since the
vertical maps map 0 to x, we deduce that

ind(¢, x) = ind(¢,0)

and so all fixed points have the same index. It is now sufficient to
show that ind(¢,0) = +1. This follows because the map on the
torus dA>0 . Gy — G lifts to a linear map F of the universal cover,
which is the Lie algebra of G. The index is then the sign of the

A. Fel'shtyn University of Szczecin
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Rationality of the Reidemeister zeta function of endomorphisms of finitely generated Abelian groups
determinant of the identity map minus this lifted map F. This
determinant cannot be zero, because 1 — ¢ must have finite kernel
by our assumption that the R(¢) is finite (if det(1 — F) = 0 then
the kernel of 1 — ¢ is a positive dimensional subgroup of G, and
therefore infinite). So we have

R(6") = #Fix (67 & = &) = L(&") |= (~1)*+#"L($") for al

n. Then zeta function Ry(z) = L(z;(az)(_l)r is rational function.
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Rationality of the Reidemeister zeta function of endomorphisms of finitely generated Abelian groups
A Convolution Product
) ) ) e P\ oo
When Ry(z) is a rational function the infinite sequence {R(¢")}72,
of Reidemeister numbers is determined by a finite set of complex
numbers - the zeros and poles of Ry(z).

Lemma
R4(z) is a rational function if and only if there exists a finite set of

complex numbers «; and f; such that R(¢") = Zj ij’ — > ;af for
every n > Q.

PROOF Suppose Rj(z) is a rational function. Then

Rd)(Z) _ Hl(l — (,Y,‘Z)
- )
[1;(1 - B2)
A. Fel'shtyn University of Szczecin
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Rationality of the Reidemeister zeta function of endomorphisms of finitely generated Abelian groups
where «;, 3; € C. Taking the logarithmic derivative of both sides
and then using the geometric series expansion we see that

ny __ n n N H
R(¢") =5 Bl = > ;af. The converse is proved by a direct

calculation.

For two sequences (x,) and (y,) we may define the corresponding
zeta functions:

o0

X(z) :=exp Z X—:z” ,
n=1

o0
Y(z) :=exp Z )%z"
n=1

Alternately, given complex functions X and Y {(defined in a
A. Fel'shtyn University of Szczecin
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Rationality of the Reidemeister zeta function of endomorphisms of finitely generated Abelian groups

neighbourhood of 0) we may define sequences

n

dz"

log (X(2)) |2=0,

Xp 1=

n

Y= log (Y(2)) |z=o0 -

Taking the componentwise product of the two sequences gives
another sequence, from which we obtain another complex function.
We call this new function the additive convolution of X and Y, and
we write it

(X % Y)(z) :=exp Z XLnynz”

n=1
A. Fel'shtyn University of Szczecin
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Rationality of the Reidemeister zeta function of endomorphisms of finitely generated Abelian groups
It follows immediately from lemma 1 that if X and Y are rational
functions then X % Y is a rational function. In fact we may show
using the same method the following

Lemma (Convolution of rational functions)

Let
X(@) =]t -aiz)™, v(z) =[] -2V
i J
be rational functions in z. Then X x Y is the following rational
function

(X * Y)(2) = [[( = ciBz)~ "0, (13)

i
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Rationality of the Reidemeister zeta function of endomorphisms of finitely generated Abelian groups

Lemma

Let ¢ : ZK — Z* be a group endomorphism. Then we have

k (=1)"
Ro(z) = [ ] det(1 — Ng.oz)=D"™ (14)
i=0

where o = (—1)P with p the number of j € spec ¢ such that
< —1, and r the number of real eigenvalues of ¢ whose absolute
value is > 1. N\' denotes the exterior power.

PROOF Since Z¥ is abelian, we have as before,

R(¢") = #Coker (1 — ¢").
A. Fel'shtyn University of Szczecin
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On the other hand we have

#Coker (1 — ¢") =| det(1 — ¢") |,

and hence R(¢") = (—=1)""P"det(1 — ¢"). It is well known from
linear algebra that det(1 — ¢") = S5 ((—1) tr(A'g").

From this we have the following “trace formula” for Reidemeister
numbers:

R(¢") = (= )'*”"Z( 1)’tr(/\¢) (1

«AFr «E»

NS ]
N

n
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0
i)



We now calculate directly

Rs(z) = exp (Z R(fn)z")

(=1

k 00 1 ) (-1)
11 (exp (Z - tr(A'¢").(az)">> )
i=0 n=1
k

(=1
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Rationality of the Reidemeister zeta function of endomorphisms of finitely generated Abelian groups

Lemma

Let ¢ : G — G be an endomorphism of a finite abelian group G.
Then we have the following “Euler product” expression

1
Ry(2) = H 1_ #0 (16)
]

where the product is taken over the periodic orbits of ¢ in G.

We give two proofs of this lemma. The first proof is given here and
the second proof is a special case of the proof for nonabelian finite

group.
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PROOF Since G is abelian, we again have,

R(#")

#Coker (1 — ¢")

= #G/#im(1—¢")

= #G/#(G/ker(1—¢"))
= #G/(#G/#ker(1-¢"))
= #ker(1-9¢")

= #Fix(¢")

We shall call an element of G periodic if it is fixed by some
iteration of ¢. A periodic element ~ is fixed by ¢" iff n is divisible= -«




by the cardinality the orbit of 7. We therefore have

R(¢") =

>

~ periodic

#[]|n

> #hl

[+v] such that,
#[1in

From this follows

«0O0>» «Fr «E» « Q>
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For a finitely generated abelian group G we define the finite
subgroup G’ to be the subgroup of torsion elements of G. We
denote the quotient G := G /G’ The group G* is torsion
free. Since the image of any torsion element by a homomorphism
must be a torsion element, the function ¢ : G — G induces maps

¢finite . Gﬁnite Gﬁnite, d)oo - G® G™°.

_“)QG
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Rationality of the Reidemeister zeta function of endomorphisms of finitely generated Abelian groups

If G is a finitely generated abelian group and ¢ an endomorphism
of G then Ry(z) is a rational function and is equal to the following
additive convolution:

Rs(z) = R(2) = RI™(2). (17)

where R3°(z) is the Reidemeister zeta function of the
endomorphism ¢>° : G — G*°, and Rg"ite(z) is the Reidemeister
zeta function of the endomorphism

pfinite . Gfinite _, Gfinite " The rational functions R3°(z) and

Rg”’te(z) are given by the formulae above
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Rationality of the Reidemeister zeta function of endomorphisms of finitely generated Abelian groups

PROOF By Pontrjagin duality we have as above
R(¢") = # Fix (¢3“ 6 G) 1 (18)

The dual group of G* is a torus whose dimension is the

rank of G. This is canonically a closed subgroup of G. We shall
denote it Gg. The quotient C/CAJO is canonically isomorphic to the
dual of Gfinite |t is therefore finite. From this we know that G is a
union of finitely many disjoint tori. We shall call these tori

Go, ..., G;.

We shall caII a torus G; periodic if there is an iteration ¢° such that
<;S$( ;) C Gj. If this is the case, then the map .G — Giis a
translatlon of the map d)s . Gy — Gp and has the same number of
fixed points as this map. If d;s(@,) ¢ G; then ¢° has no fixed-points
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in G;. From this we see
# Fix (<2>" G- G) — #Fix (qE" : Go — Go) x#{Gi | 6"(G1) < GiY.
We now rephrase this
#Fix(dA)": G = G)
= #Fix (63" : Go — Go) x #Fix (QS/f\t 6/(Go) = G/(Go)).
From this we have
Rs(2) = Rigoe)(2) * R yfinire)(2)-

The rationality of Rs(z) and the formulae for R3°(z) and Rg"ite(z)
follow from the previous lemmas. e e == aae
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Rationality of the Reidemeister zeta function of endomorphisms of finite groups

Rationality of the Reidemeister zeta function of
endomorphisms of finite groups

In this section we consider finite non-abelian groups. We shall write
the group law multiplicatively. We generalize our results on
endomorphisms of finite abelian groups to endomorphisms of finite
non-abelian groups. We shall write {g} for the ¢-conjugacy class of
an element g € G. We shall write < g > for the ordinary
conjugacy class of g in G. We continue to write [g] for the ¢-orbit
of g € G, and we also write now [< g >] for the ¢-orbit of the
ordinary conjugacy class of g € G. We first note that if ¢ is an
endomorphism of a group G then ¢ maps conjugate elements to
conjugate elements. It therefore induces an endomorphism of the
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Rationality of the Reidemeister zeta function of endomorphisms of finite groups
If G is abelian then a conjugacy class consists of a single element.
The following is thus an extension of the result in abelian case:

Theorem ( F. - R.Hill, 1994)

Let G be a finite group and let ¢ : G — G be an endomorphism.
Then R(¢) is the number of ordinary conjugacy classes < x > in G
such that < ¢(x) >=< x >.

PROOF From the definition of the Reidemeister number we have,
R(¢) = Y 1
{g}

where {g} runs through
A. Fel'shtyn University of Szczecin
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the set of ¢-conjugacy classes in G. This gives us immediately

1
RO) = DD iy
0 retm) 78}

DI

{g} x{g}
1
= 2

We now calculate for any x € G the order of {x}. The class {x} is
the orbit of x under the G-action

(g,X) '_>gx¢(g)_l4 O» «F» « =»

<

3

DA




We verify that this is actually a G-action:

(id,x) +— id.x.¢(id)™*

(8182, %) — gigox.d(g1g2) "
= gigx(B(g1)d(g2)) "
= ggx.0(g) 'o(g) !
= agi(gx0(g) )dla) "

We therefore have from the orbit-stabilizer theorem,




The condition gx¢(g)~! = x is equivalent to

xtexp(g) =1 & xlgx=¢(g)
We therefore have

xeG

R(6) = # S #{g € G | xlgx = ole)}

Changing the summation over x to summation over g, we have:

geiG

R(6) = # S #{xe G xlgx = o(e)}.

If < ¢(g) >#< g > then there are no elements x such that = -

DA




X—l

gx = ¢(g). We therefore have:

R(¢) =

L
#G

g€G such that

. #{xeG|xlex=9(g)})
<¢(g)>=<g>

The elements x such that x 1gx = ¢(g) form a coset of the
1

c > #Cl)
g€G such that

<¢lg)>=<g>
_ 1

#e ., 2

<g>CG such that
<

# < g > #C(g).

subgroup satisfying x"1gx = g. This subgroup is the centralizer of
g in G which we write C(g). With this notation we have,
R(¢)

«40>» «Fr» « E>»

«E
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The last identity follows because C(h~tgh) = h=1C(g)h. From the
orbit stabilizer theorem, we know that # < g > .#C(g) = #G.
We therefore have R(¢) = #{< g >C G |< ¢(g) >=< g >}.
From this theorem we have immediately,
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Rationality of the Reidemeister zeta function of endomorphisms of finite groups

Let ¢ be an endomorphism of a finite group G. Then Ry(z) is a
rational function with a functional equation. In particular we have,

Ro(2) = TT T——pzasy R <1> — (—1)°Z°Ry(z).  (19)

V4
[<g>]

The product here is over all periodic ¢-orbits of ordinary conjugacy
classes of elements of G. The number #[< g >] is the number of
conjugacy classes in the ¢-orbit of the conjugacy class < g >. In
the functional equation the numbers a and b are respectively the
number of periodic ¢-orbits of conjugacy classes of elements of G
and the number of periodic conjugacy classes of elements of G.

A. Fel'shtyn University of Szczecin

Dynamical zeta functions



PROOF From the previous theorem we know that R(¢") is the
number of conjugacy classes < g >C G such that
¢"(< g >) C< g >. We can rewrite this

R(¢") = >

#l< g >].
[< g >] such that
#[<g>]|n

«0O0>» «Fr «E» « 3 Q>



From this we have,

Ry(z) = H exp

[<g>]

o0

>

#<g >l n
n = 1 such that

#[<g>]|n

n

for log(1 — z). The functional equation follows from the previous
theorem by direct computation.

«40>» «Fr» «=» <« 3 Q>

The first formula now follows by using the power series expansion



Consider the lower central series of a finitely generated group G:
G =G DGy D, where Gj =[G, Gj_1] is the j-fold
commutator subgroup v;(G) of G. The group G is called

nilpotent if G; = 1 for some j. When G, # 1 but Gcy1 =1, we
say that it is c-step nilpotent.

«40>» «Fr «=)» «=)»
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Rationality of the Reidemeister zeta function of endomorphisms of finitely generated torsion free nilpotent groups
In this section we consider finitely generated torsion free nilpotent
group I. It is well known(Malcev) that such group I is a uniform
discrete subgroup of a simply connected nilpotent Lie group G
(uniform means that the coset space G /I is compact).The coset
space M = G/T is called a nilmanifold.Since ' = 71(M) and M is a
K(I', 1), every endomorphism ¢ : I — I' can be realized by a
selfmap f : M — M such that f, = ¢ and thus R(f) = R(¢).

Any endomorphism ¢ : I — [ can be uniquely extended to an
endomorphism F : G — G. Let F : G — G be the corresponding
Lie algebra endomorphism induced from F.

Lemma

A. Fel'shtyn University of Szczecin
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Rationality of the Reidemeister zeta function of endomorphisms of finitely generated torsion free nilpotent groups

If T is a finitely generated torsion free nilpotent group and ¢ an
endomorphism of I .Then

R(6) = (-1 S (1) trATF, (20)
i=0

where m is rgl" = dim M, p the number of . € spec F such that
< —1, and r the number of real eigenvalues of F whose absolute
value is > 1.

PROOF: Let f: M — M be a map realizing ¢ on a compact
nilmanifold M of dimension m.We suppose that the Reidemeister
number R(f) = R(¢) is finite. The finiteness of R(f) implies the

A. Fel'shtyn University of Szczecin
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of Anosov's theorem states, in particular, that if L(f) # 0 than
From this we have

nonvanishing of the Lefschetz number L(f).A strengthened version
N(f) = |L(f)| = R(f). It is well known that L(f) = det(F — 1).

R(¢) = R(f) = L(f)| = |det(1 — F)| = (~1)"Pdet(1 — F) =

= (—1)*P i(—l)"tr/\"ﬁ.
i=0

«0O0>» «Fr «=» « Q>
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Rationality of the Reidemeister zeta function of endomorphisms of finitely generated torsion free nilpotent groups

Theorem

If T is a finitely generated torsion free nilpotent group and ¢ an
endomorphism of I .Then Ry4(z) is a rational function and is equal
to

. (-1
Ro(z) = | [J det(@ — NF -5 - 2)(D™ (21)
i=0

where o = (—=1)P,p , r, m and E is defined in Lemma above.
PROOF Lemma above implies the trace formula for R(¢") :

m
R(6") = (~1) " S (1) (N F)"
A. Fel'shtyn i=0 University of Szczecin
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We now calculate directly

ol

Rs(z)

oo (Z( 1) Sl 1)'tr(A'F")( ))

k o0 1 (-1 (=1
= (H (exp (Z . tr(ATF™) - (JZ)")) )
i=0 n=1
k
= (I det (1-NF-02)

o\
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Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R

Reidemeister and Nielsen zeta functions for maps of
infra-nilmanifolds and infra-solvmanifolds

| will try to explain a essential progress in the problem of the
rationality and properties of the Nielsen and the Reidemeister zeta
function for maps of infra-nilmanifolds and infra-solvmanifolds of
type R and their connection to the topological entropy of maps and
the Reidemeister torsion of the corresponding mapping tori and also
the progress in the problem of Gauss congruences for Nielsen and
Reidemeister numbers. Zeta functions R¢(z) and N¢(z) coincide
and are rational on on infra-nilmanifolds and on infra-solvmanifolds
of type R. This allows to give a linear bound for the number=of
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Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R
We consider almost Bieberbach groups 1 C G x Aut(G), where G
is a connected, simply connected nilpotent Lie group, and
infra-nilmanifolds M = M\ G. It is known that these are exactly the
class of almost flat Riemannian manifolds . It is L. Auslander's
result that [ := 1N G is a lattice of G, and is the unique maximal
normal nilpotent subgroup of . The group ® = I1/T is the
holonomy group of I or M. Thus we have the following
commutative diagram:

A. Fel'shtyn
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1 > G > G ¥ Aut(G) —— Aut(G) —— 1

I I I

1 s I > M LN 0] — 1

Thus @ sits naturally in Aut(G). Denote p : ® — Aut(®),

A A, = the differential of A.

Let M =T\ G be an infra-nilmanifold. Any continuous map

f: M — M induces a homomorphism ¢ : 1 — . We can choose
an affine element (d, D) € G x Endo(G) such that

#(a)o(d,D) = (d,D)oa, YaecR - - (22) oo




Introduction Reidemeister zeta function Reidemeister torsion R — infinity groups Dynamic representation theory zeta
o] o] o]
o] [e]e) o]
o]

(e]

00@00000

Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R
This implies that the affine map (d,D) : G — G induces a
continuous map on the infra-nilmanifold M = M\ G, which is
homotopic to f. That is, f has an affine homotopy lift (d, D).
We can choose a fully invariant subgroup A C I' of I which is of
finite index. Therefore ¢(A) C A and so ¢ induces the following
commutative diagram

1 A 1 v 1
IEO GO €
1 A 1 v 1

where W =T1/A is finite. Applying (22) for A € A C I1, we see that
¢(\) = dD(A)d ! = (74D)(\)

A. Fel'shtyn University of Szczecin
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Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R
where 74 is the conjugation by d. The homomorphism ¢' : A — A
induces a unique Lie group homomorphism F = 74D : G — G, and
hence a Lie algebra homomorphism F, : & — &. On the other
hand, since #(A) C A, f has a lift f : N — N on the nilmanifold
N := A\ G which finitely and regularly covers M and has V¥ as its
group of covering transformations.

Theorem (Averaging Formula (JB Lee - KB Lee, 2006))
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Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R

Let f be a continuous map on an infra-nilmanifold T\ G with
holonomy group ®. Let f have an affine homotopy lift (d, D) and
let ¢ : I — I be the homomorphism induced by f. Then we have

L(f) = Fil > det(l — AF) = ’; > det(l — A.D,),

Acod Acd

N(F) = N1>! S [det(l — AF)| = j)| " |det(/ — A.D.)|,

Acd Aed
R(F) = R(6) = le S o (det(A, — F.)) = Ml>| " o (det(A, — D.))
Acd Acd

where o : R — RU {oo} is defined by o(0) = oo and o(x) = |x|
for all x #+ 0.
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Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R

We can choose a linear basis of & so that p(®) = ¢, C Aut(®)
can be expressed as diagonal block matrices

[cbl 0

0 ¢ ] C GL(m,R)xGL(n2,R) C GL(n,R)
2

and D, can be written in block triangular form
Dy *
0 Dy
where D; and D, have eigenvalues of modulus < 1 and > 1,

respectively. We can assume ® = ®;y®P,. Every element o € 1 is
of the form (a, A) € G x Aut(G) and « is mapped to A = (A1, A2).
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Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R

We define

|_|+:{04€|_|\detA2:l}

Then T is a subgroup of I of index at most 2. If [[1: 4] =2,
then I, is also an almost Bieberbach group and the corresponding
infra-nilmanifold M, = N\ G is a double covering of M =M\ G;
the map f lifts to a map f. : My — M, which has the same affine
homotopy lift (d, D) as f. If D, has no eigenvalues of modulus

> 1, then for any A € ®, A= A; and in this case we take N =T1.

Theorem (F.- Jong Bum Lee, 2013)
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Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R

Let f be a continuous map on an infra-nilmanifold with an affine
homotopy lift (d, D). Assume N(f") = |L(f")| for all n > 0 and

none of the eigenvalues of D, is a root of unity. Then the Nielsen
zeta function N¢(z) is a rational function and is equal to

Ne(z) = L((=1)72) V'

where q is the number of real eigenvalues of D, which are < —1
and r is the number of real eigenvalues of D, of modulus > 1.
When the Reidemeister zeta function R¢(z) is defined, we have

Rf(z) = Ry(z) = N¢(2).

A. Fel'shtyn University of Szczecin
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Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R
The class of infra-solvmanifolds of type R contains and shares a lot
of properties of the class of infra-nilmanifolds such as the averaging
formula for Nielsen numbers. Therefore, the statement about
N¢(z) can be generalized directly to the class of infra-solvmanifolds
of type R.

Let S be a connected and simply connected solvable Lie group. A
discrete subgroup I of S is a lattice of S if '\S is compact, and in
this case, we say that the quotient space I'\S is a special
solvmanifold. Let 1 C Aff(S) be a torsion-free finite extension of

A. Fel'shtyn University of Szczecin
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Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R

the lattice T =M NS of S. That is, I fits the short exact sequence

1 S Aff(S) —— Aut(S) —— 1
I | |
1 r n — nNor —1

Then I acts freely on S and the manifold M\S is called an
infra-solvmanifold. The finite group ® = /T is the holonomy
group of I or M\S. It sits naturally in Aut(S). Thus every
infra-solvmanifold M\S is finitely covered by the special
solvmanifold M\S. An infra-solvmanifold M = 1\ S is of type R if S
is of type R or completely solvable, i.e., if ad X : & — & has only
real eigenvalues for all X in the Lie algebra & of S.

A. Fel'shtyn University of Szczecin
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Recall that a connected solvable Lie group S contains a sequence of
closed subgroups

1=NC---CNe=S

such that N; is normal in Njy; and N;1/N; =R or N 1/N; = St

If the groups Ny, ---, Ny are normal in S, the group S is called
supersolvable. The supersolvable Lie groups are the Lie groups of
type R.

_“)QG
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Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R
For a connected Lie group S, the following are equivalent:
(1) S is supersolvable.
(2) All elements of Ad(S) have only positive eigenvalues.
(3) S is of type R.

We shall assume that f : M — M is a continuous map on an
infra-solvmanifold M = I\ S of type R with holonomy group ®.
Then f has an affine homotopy lift (d,D): S — S, and so f* has
an affine homotopy lift (d, D)% = (d’, D¥) where

d' = dD(d)---DF"1(d).

A. Fel'shtyn University of Szczecin
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Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R

Theorem (K. Dekimpe - G.J. Dugardein; F. -J.B. Lee, 2013)

Let f be a continuous map on an infra-solvmanifold M\S of type R
with an affine homotopy lift (d, D). Then the Reidemeister zeta
function, whenever it is defined, is a rational function and is equal

to
Le((=1)"2)EDP when M =My ;
Re(z) = Ne(2) = § /1, ((~1)m2)\ (CDP*"
(%) When I 7é |_|+,
A. Fel'shtyn University of Szczecin
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Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R

Recall the following
Theorem (Bourbaki, Algebra)

Let o be a Lie algebra automorphism. If none of the eigenvalues of
o is a root of unity, then the Lie algebra must be nilpotent.

Theorem

If the Reidemeister zeta function R¢(z) is defined for a
homeomorphism f on an infra-solvmanifold M of type R, then M is
an infra-nilmanifold.

Proof. Let f be a homeomorphism on an infra-solvmanifold
M =T\S of type R. We may assume that f has an affine map as

A. Fel'shtyn University of Szczecin
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Reidemeister and Nielsen zeta functions for maps of infra-nilmanifolds and infra-solvmanifolds of type R
a homotopy lift. There is a special solvmanifold N = A\S which
covers M finitely and on which f has a lift f . which is induced by a
Lie group automorphism D on the solvable Lie group S. We have
an averaging formula for Reidemeister numbers:

R(f")m S R@F?).

aen/A

Assume now that f defines the Reidemeister zeta function. Then
R(f") < oc for all n > 0. The above averaging formula implies that
R(f") < oo for all n. We have
R(F") = N(f") = |L(f")| >-0.
A. Fel'shtyn University of Szczecin
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Since L(f") = det(/ — D7) # 0 for all n > 0, this would imply that
the differential D, of D has no roots of unity. By Borel theorem, S
must be nilpotent.

Results obtained for continuous maps motivate the following

Reidemeister zeta function is a rational function for endomorphisms
of polycyclic-by-finite groups.

- . - A



To write down a functional equation for the Reidemeister and the
the Lefschetz zeta function:

Nielsen zeta function, we recall the following functional equation for

«0O0>» «Fr «E» « 3 Q>



(67

dz

Let M be a closed orientable manifold of dimension m and let

f: M — M be a continuous map of degree d. Then
Le (

) — e (—adz) V™M) [ (g7) (D7
|d| =1 then e = £1.

where o = +1 and € € C is a non-zero constant such that if

«40>» «Fr» «=» <« > Q>
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Functional Equation
Proof.
In the Lefschetz zeta function formula, we may replace £, by
£ H*(M; Q) — H*(M; Q). Let B = dim Hi(M; Q) be the kth
Betti number of M. Let \j; be the (complex and distinct)
eigenvalues of £, : H(M; Q) — Hi(M; Q). Via the natural
non-singular pairing in the cohomology
HK(M; Q) ® H™=*(M; Q) — Q, the operators f* , and d(f;") are
adjoint to each other. Hence since )\, ; is an eigenvalue of £,
pej = d /A j is an eigenvalue of £, = f;*. Furthermore,

Bk = Bm—k = Be.
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Consequently, we have
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Functional equation of a convolution Let X(z) and Y(z) be
rational functions satisfying the following functional equations

x( L ) — Kz aX(2)h, Y (L) — Ky 2 Y(2)P,
dr.z

dy.z

with d; € C*, e € Z ,K; € C* and f; € {1,—1}. Suppose also
that X(0) = Y(0) = 1.

«40> «Fr «=r «=)»




Then the rational function X x Y has the following functional
equation:

(X * Y) <d1::122> = K3z_eleZ(X * Y)(z)flfz (23)

for some Kz € C*.

_‘OQC’”
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Functional equation for endomorphisms of finitely generated Abelian groups

Let ¢ : Z¥ — Z¥ be an endomorphism. The Reidemeister zeta
function Ry(z) has the following functional equation:

1 Y
R, (dZ> = €e1.Ry(2) V", (24)
where d = det ¢ and €1 is a constant in C*.

PROOF Via the natural nonsingular pairing

(N'ZK) @ (N<=1Zk) — C the operators A“~/¢p and d.(N¢)~! are
adjoint to each other.

We consider an eigenvalue )\ of A/¢p. By lemma above , this

i1\ (=1) :
contributes a term ((1 — 22)(=1) H) to Ry (). We rewrite

A. Fel'shtyn University of Szczecin
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this term as

((1 - T> o (

together we obtain,

doz

—dz

(-nn\ O
v) )

and note that % is an eigenvalue of AK=/¢. Multiplying these terms

DA



The variable z has disappeared because

Z( 1) dimA ZK = Z( 1) ¢, = 0.

i=0

_QQG
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Functional equation for endomorphisms of finitely generated Abelian groups

Let ¢ : G — G be an endomorphism of a finite, abelian group G.
The Reidemeister zeta function R,(z) has the following functional
equation:

1

Ry <> = (—1)Pz9Ry(2), (25)

z
where q is the number of periodic elements of ¢ in G and p is the
number of periodic orbits of ¢ in G.

PROOF This is a simple calculation.

We begin with formula for Reidemeister zeta of finite abelian
A. Fel'shtyn University of Szczecin
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Functional equation for endomorphisms of finitely generated Abelian groups

The statement now follows because > 1 #[7] = q.

Theorem (Functional equation, F.- R. Hill, 1994)

Let ¢ : G — G be an endomorphism of a finitely generated abelian
group G. If G is finite the functional equation of Ry is described in
lemma above. If G is infinite then Ry has the following functional
equation:

1 __1\rank G
Ry ( dz> = e2.Rs(2) TV (26)
where d = det (¢ : G* — G™) and €3 is a constant in C*.

PROOF We have Ry(z) = R3°(2) = Rg”ite(z). In the previous two
lemmas we have obtained functional equations-for the functions

A. Fel'shtyn University of Szczecin
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R3°(z) and Rg"ite(z). Convolution lemma now gives the functional
equation for Ry(z).
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Functional equation for endomorphisms of finitely generated Abelian groups

Let f be a continuous map on an orientable infra-solvmanifold

M =TI\S of type R with an affine homotopy lift (d, D). Then the
Reidemeister zeta function, whenever it is defined, and the Nielsen
zeta function have the following functional equations:

p <1> B Re(z)D7 0" when M =My;
"\dz Re(z)("1)7 et when TT # T

where d is a degree f, m = dim M, € is a constant in C*,

o = (—1)", p is the number of real eigenvalues of D, which are

> 1 and n is the number of real eigenvalues of D, which are < —1.
If |d| =1 then e = £1.

A. Fel'shtyn University of Szczecin
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Let f be a continuous map on an infra-solvmanifold of type R
induced by an affine map. Then AM¢(z) = N¢(z), i.e., AM¢(z) is a
rational function with functional equation.

«40>» «Fr» « E>»
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Like the Euler characteristic, the Reidemeister torsion is
algebraically defined.

Roughly speaking, the Euler characteristic is a graded version of the
dimension, extending the dimension from a single vector space to a
complex of vector spaces. In a similar way, the Reidemeister torsion

is a graded version of the absolute value of the determinant of an
isomorphism of vector spaces.

DA




Introduction Reidemeister zeta function Reidemeister torsion R — infinity groups Dynamic representation theory zeta
o] o] o]
o] [e]e) o]
o]

(e]

00000000

Let d': C' — C'™*! be a cochain complex C* of finite dimensional
vector spaces over C with C' =0 for i < 0 and large i. If the
cohomology H' = 0 for all i we say that C* is acyclic. If one is
given positive densities A; on C' then the Reidemeister torsion
7(C*, Aj) € (0,00) for acyclic C* is defined as follows:

Definition

Consider a chain contraction ¢’ : C' — C'~1, i.e., a linear map such
that dod +dod =id. Then d + § determines a map

(d+6)y: Ct:=0C? - C :=®C?*! and a map

(d+6)_: C~ — CT. Since the map (d +0)? = id + 6% is
unipotent, (d + 0)4 must be an isomorphism. One defines

7(C*, A}) := | det(d + 9)4|.

A. Fel'shtyn University of Szczecin
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Reidemeister torsion is defined in the following geometric setting.
Suppose K is a finite complex and E is a flat, finite dimensional,
complex vector bundle with base K. We recall that a flat vector
bundle over K is essentially the same thing as a representation of
m1(K) when K is connected. If p € K is a base point then one may
move the fibre at p in a locally constant way around a loop in K.
This defines an action of 71(K) on the fibre E, of E above p. We
call this action the holonomy representation p : 7 — GL(Ep).

A. Fel'shtyn University of Szczecin
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Conversely, given a representation p : m — GL(V') of 7 on a finite
dimensional complex vector space V/, one may define a bundle
E=E,= (K x V)/m. Here K is the universal cover of K, and
acts on K by covering transformations and on V' by p. The
holonomy of E, is p, so the two constructions give an equivalence
of flat bundles and representations of .

If K is not connected then it is simpler to work with flat bundles.
One then defines the holonomy as a representation of the direct
sum of 71 of the components of K. In this way, the equivalence of
flat bundles and representations is recovered.

Suppose now that one has on each fibre of E a positive density
which is locally constant on K. In terms of pg this assumption just
means |det pg| = 1. Let V denote the fibre of £. Then the

A. Fel'shtyn University of Szczecin
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cochain complex C/(K; E) with coefficients in E can be identified
with the direct sum of copies of V associated to each i-cell o of K.
The identification is achieved by choosing a basepoint in each
component of K and a basepoint from each j-cell. By choosing a
flat density on E we obtain a preferred density A; on C/(K,E). A
case of particular interest is when E is an acyclic bundle, meaning
that the twisted cohomology of E is zero (H'(K; E) = 0). In this
case one defines the R-torsion of (K, E) to be

7(K; E) = 7(C*(K; E),A;) € (0,00). It does not depend on the
choice of flat density on E.

The Reidemeister torsion of an acyclic bundle £ on K has many
nice properties. Suppose that A and B are subcomplexes of K.

A. Fel'shtyn University of Szczecin
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Then we have a multiplicative law:
T(AUBE)-7(ANB;E) =7(AE) - 7(B; E) (27)

that is interpreted as follows. If three of the bundles
EIAUB,)E|IAN B, )E|A,)E|B are acyclic then so is the fourth and
the equation (27) holds.

Another property is the simple homotopy invariance of the
Reidemeister torsion. In particular 7 is invariant under subdivision.
This implies that for a smooth manifold, one can unambiguously
define 7(K; E) to be the torsion of any smooth triangulation of K.
In the case K = S is a circle, let A be the holonomy of a generator
of the fundamental group m1(S!). One has that E is acyclic if and

A. Fel'shtyn University of Szczecin
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only if I — A is invertible and then
7(SY E) = | det(/ — A)|

Note that the choice of generator is irrelevant as

| — A1 =(=A"1)(/ — A) and |det(—A71)| = 1.

These three properties of the Reidemeister torsion are the
analogues of the properties of Euler characteristic (cardinality law,
homotopy invariance and normalization on a point), but there are
differences. Since a point has no acyclic representations (H° # 0)
one cannot normalize 7 on a point as we do for the Euler
characteristic, and so one must use S! instead. The multiplicative
cardinality law for the Reidemeister torsion can be made additive

just by using log 7, so the difference here is inessential.
A. Fel'shtyn University of Szczecin
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More important for some purposes is that the Reidemeister torsion
is not an invariant under a general homotopy equivalence: as
mentioned earlier this is in fact why it was first invented.

It might be expected that the Reidemeister torsion counts
something geometric (like the Euler characteristic). D. Fried
showed that it counts the periodic orbits of a flow and the periodic
points of a map. We will show that the Reidemeister torsion counts
the periodic point classes of a map (fixed point classes of the
iterations of the map).
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Some further properties of 7 describe its behavior under bundles.
Let p: X — B be a simplicial bundle with fiber F where F, B, X
are finite complexes and p~! sends subcomplexes of B to
subcomplexes of X over the circle S1. We assume here that £ is a
flat, complex vector bundle over B . We form its pullback p*E over
X. Note that the vector spaces H'(p~%(b),C) with b € B form a
flat vector bundle over B, which we denote H'F. The integral
lattice in H'(p~1(b), R) determines a flat density by the condition
that the covolume of the lattice is 1. We suppose that the bundle
E ® H'F is acyclic for all i. Under these conditions D. Fried has
shown that the bundle p*E is acyclic, and

7(X:pE) = [[r(B: Ew HIF)V.
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Mapping torus of map f. Let f : X — X be a homeomorphism of a
compact polyhedron X. Let Tr := (X x 1)/(x,0) ~ (f(x),1) be
the mapping torus of f.

We shall consider the bundle p: Tf — S! over the circle S*. We
assume here that E is a flat, complex vector bundle with finite
dimensional fibre and base S*. We form its pullback p*E over Ty.
Note that the vector spaces H'(p~1(b),C) with b € S* form a flat
vector bundle over ST, which we denote H'F. The integral lattice
in H (p~1(b),R) determines a flat density by the condition that the
covolume of the lattice is 1. We suppose that the bundle £ ® H'F
is acyclic for all /. Under these conditions the bundle p*E is acyclic,
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and we have

T(Trip"E) = [[7(SHE® HF)Y', (28)

Let g be the preferred generator of the group 71(S*) and let

A = p(g) where p : 11(S') — GL(V). Then the holonomy around
g of the bundle E® H'F is A® (f*)". Since

7(SY; E) = | det(/ — A)] it follows from (28) that

r(Trip E) = [ | det(/ = A (F)) |V

We now consider the special case in which E is one-dimensional, so

A is just a complex scalar A of modulus one. Thensin terms of the
A. Fel'shtyn University of Szczecin
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rational function L¢(z) we have :

torus.

This means that the special value of the Lefschetz zeta function is
given by the Reidemeister torsion of the corresponding mapping

«0O0>» «Fr «E» « 3 Q>

7(Trip'E) = H | det(/ = ACF)) (= Le) [TH (29)
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Theorem (F. - Jong Bum Lee, 2013)

Let f : M — M be a homeomorphism of an infra-nilmanifold M.
Assume that N(f) = |L(f)|. Then

71)r+1

7(Tri P E) =| Le(A) [71=] Ne(od) [T =] Re(on) D
where 0 = (—1)P, p is the number of real eigenvalues of F* in the
region (—oo, —1) and r is the number of real eigenvalues of F*
whose absolute value is greater that 1.

A. Fel'shtyn University of Szczecin
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Theorem (F. - Jong Bum Lee, 2013)

Let f be a homeomorphism on an infra-nilmanifold T\ G with an
affine homotopy lift (d, D). Then

RA(=D )] = [Ro((—D )7 = IN((~D))
_ ILe(A)| = 7(T¢; p*E) when M =1T1,;
ILe, (N Le(N) 7Y = 7(T; p*E)r( T pL E)™Y when T #£ T,

where p is the number of real eigenvalues of D, which are > 1 and
n is the number of real eigenvalues of D, which are < —1.
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Theorem (F.- Jong Bum Lee, 2013)

Let f be a homeomorphism on an infra-solvmanifold TI\S of type R
with an affine homotopy lift (d, D). Then

NF((=2)"2) D™
{’Lf( )| =7(T¢; p*E)~! when M =1T1,;
ILe, (N Le(N) 7Y = 7(T; p*E)T( T pLE)™Y when T #£ T,

where p is the number of real eigenvalues of D, which are > 1 and
n is the number of real eigenvalues of D, which are < —1.

A. Fel'shtyn University of Szczecin
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> uld) R(F74) =" u(d) N(F¥) =0 mod n
d|n
for all n > 0.

Let f be any continuous map on an infra-solvmanifold of type R
such that all R(f") are finite. Then we have

d|n

«40>» «Fr» «=» <« > Q>



The growth rate of a sequence a,, of complex numbers is defined by

Growth(a,) := max {1, lim sup |a,,|1/"} .

n—00

We define the asymptotic Nielsen number and the asymptotic
Reidemeister number to be the growth rate

N°°(f) := Growth(N(f")) and R>(f) := Growth(R(f"))
correspondingly. These asymptotic numbers are homotopy type
invariants.

«40>» «Fr» «=» <«
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Topological Entropy and Asymptotic Nielsen number
We denote by sp(A) the spectral radius of the matrix or the
operator A, sp(A) = lim, {/||A"]|| which coincide with the largest
modulus of an eigenvalue of A. We denote by A F. := @7, A*Fu
a linear operator induced in the exterior algebra
N R™ =P o AN'R™ of & considered as the linear space R™.

Theorem

Let f be a continuous map on an infra-solvmanifold of type R with
an affine homotopy lift (d, D). Then we have

N (f) = sp(\ D.)
provided that 1 is not in the spectrum of D,.

A. Fel'shtyn University of Szczecin
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Topological Entropy and Asymptotic Nielsen number

Theorem (F.- J.B. Lee, 2014)

Let f be a continuous map on an infra-solvmanifold M of type R
with an affine homotopy lift (d, D). If 1 is not in the spectrum of
Dy, then

h(f) > log(sp(f))-
If f is the map on M induced by the affine map (d, D), then

h(f) = h(f) = log sp(f),
h(F) = log sp(/\ D) = log N°°(f) = log N*°(f).

Hence f minimizes the entropy in the homotopy class of f.

A. Fel'shtyn University of Szczecin
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We denote by R the radius of convergence of the zeta functions
Nf(Z) or Rf(Z).
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Topological Entropy and Asymptotic Nielsen number

Let f be a continuous map on an infra-nilmanifold with an affine
homotopy lift (d, D). Then the Nielsen zeta function N¢(z) and
the Reidemeister zeta function R¢(z), whenever it is defined, have
the same positive radius of convergence R which admits following
estimation

R > exp(—h) > 0,

where h = inf{h(g) | g ~f}.
If 1 is not in the spectrum of D, the radius R of convergence of
Rf(Z) is

1 1 1

R

- N>(f) — exph(f)  sp(AD.)

A. Fel'shtyn University of Szczecin
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N¢(z) is a rational function with coefficients in Q.
On the other hand, since N¢(0) = 1 by definition, z =0 is not a
zero nor a pole of the rational function N¢(z). Thus we can write

Nf(Z) o U(Z) o H,(l — 6,‘2) _ H(l _ )\,‘Z)_pi
i=1

S v(z) TL( - y2)
with all \; distinct nonzero algebraic integers and p; nonzero
integers. This induces
r(f)
N(FY =3 pidk. (N1)

I=1 «40> «Fr «=r «=)» = Q>



We define A\(f) :=max{|\;| | i=1,---,r(F)}. If r(f) =0, i.e., if
N(fk) =0 for all k >0, then N¢(z) =1 and 1/R = 0. In this
case, we define customarily A(f) = 0.

In this section, we study the asymptotic behavior of the Nielsen
numbers of iterates of maps on infra-solvmanifolds of type R.
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Essential periodic orbits

For a map f of an infra-solvmanifold of type R, one of the

following three possibilities holds:

(1) A(f) =0, which occurs if and only if N¢(z) = 1.

(2) The sequence {N(f*)/\(f)*} has the same limit points as a
periodic sequence {); ajef} where aj € Z,¢j € C and €] =
for some q > 0.

(3) The set of limit points of the sequence { N(f*)/\(f)*}
contains an interval.

A. Fel'shtyn
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Essential periodic orbits
In this section, we shall give a linear lower bound for the number of
essential periodic orbits of maps on infra-solvmanifolds of type R,
which sharpens well-known results of Shub and Sullivan for periodic
points and of Babenko and Bogatyi for periodic orbits.
We denote by O(f, k) the set of all essential periodic orbits of f
with length < k. Thus O(f, k) = {(F) |
[F is a essential fixed point class of ™ with m < k}.

Theorem (F. - Jong Bum Lee, 2014)
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Let f be a map on an infra-solvmanifold of type R. Suppose that
the sequence N(f*) is unbounded. Then there exists a natural
number Ny such that

k — No

k> No = #0O(f, k) > =0

Using Reidemeister/Nielsen zeta function we can also study the set

of (homotopy) minimal periods of maps f on infra-nilmanifolds and
A. Fel'shtyn University of Szczecin
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on infra-solvmanifolds of type R.

R groups: examples

Definition
A group G is an Ru.-group if for any automorphism ¢ the number
R(¢) is infinite.

In contrast with the case of automorphisms, we have a plenty of
classes of groups and endomorphisms for which the Reidemeister
zeta function is well defined, also among groups with R, property.
The problem of determining which classes of discrete infinite groups
have the R, property is an area of active research initiated in- 1994.

A. Fel'shtyn University of Szczecin

Dynamical zeta functions



Introduction
o]
o]
o]

Reidemeister zeta function Reidemeister torsion R — infinity groups Dynamic representation theory zeta

[e] [e]
(o] [e]
[e]

[e]

(o]

[e]

[e]

[e]

[e]

[e]

Later, it was shown by various authors that the following groups
have the R..-property:

m non-elementary Gromov hyperbolic groups (F., Levitt-Lustig);

A. Fel'shtyn

relatively hyperbolic groups (F.);

Baumslag-Solitar groups BS(m, n) except for BS(1,1)
(F.—D.Gongalves), generalized Baumslag-Solitar groups, that
is, finitely generated groups which act on a tree with all edge
and vertex stabilizers infinite cyclic (Levitt); the solvable
generalization ' of BS(1, n) given by the short exact sequence
1— Z[] - T — Z* — 1, as well as any group
quasi-isometric to I (Taback-Wong);

University of Szczecin
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m a wide class of saturated weakly branch groups (including the
Grigorchuk group and the Gupta-Sidki-Sushchanskyy groups)
(F. - Yu.Leonov - E.T.), Thompson's group F (Bleak — F. —
Gongalves); generalized Thompson's groups F,, o and their
finite direct products (Gongalves — Kochloukova);
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m symplectic groups Sp(2n,7Z), the mapping class groups Mods
of a compact oriented surface S with genus g and p boundary
components, 3g + p —4 > 0, and the full braid groups B,(S)
on n > 3 strings of a compact surface S in the cases where S

is either the compact disk D, or the sphere S? (Damani — F. —
Gongalves);
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R~ groups

m extensions of SL(n,Z), PSL(n,Z), GL(n,Z), PGL(n,Z),
Sp(2n,7), PSp(2n,7Z), n > 1, by a countable abelian group,
and normal subgroup of SL(n,Z), n > 2, not contained in the
centre (Mubeena — Sankaran);

m GL(n,K) and SL(n, K) if n > 2 and K is an infinite integral
domain with trivial group of automorphisms, or K is an
integral domain, which has a zero characteristic and for which
Aut(K) is torsion (Nasybullov);

m irreducible lattice in a connected semi simple Lie group G with
finite center and real rank at least 2 (Mubeena-Sankaran);

A. Fel'shtyn University of Szczecin
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Dynamic representation theory zeta functions

Suppose, ¢ is an endomorphism of a discrete group I'. Generally the
correspondence ¢ : p +— p o ¢ does not define a dynamical system
(an action of the semigroup of positive integers) on the unitary
dual T or its finite-dimensional F,c part, or finite 4 part, because in
contrast with the authomorphism case, the representation p o ¢
may be reducible. Here the unitary dual is the space of equivalence
classes of unitary irreducible representations of I', equipped with the
hull-kernel topology, ¢ is its subspase formed by finite-dimensional
representations, and F,c,r is formed by finite representations.
Nevertheless we can consider representations p such that p ~ p o ¢.

A. Fel'shtyn University of Szczecin
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A representation theory Reidemeister number RT(¢) is the
number of all [p] € T such that p ~ po ¢. Taking [p] € T
(respectively [p] € Tg) we obtain RT*(¢) (respectively RT(¢)).
Evidently RT(¢) > RT (¢) > RT(¢).
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If these numbers are finite for all powers of ¢, we define the
corresponding dynamic representation theory zeta functions

= n i f(in
RTy4(z) :=exp ZR7_I(7¢)ZN , RT(;(Z) = exp ZRTn(qﬁ)z" 7

n=1 n=1

>, RTT (¢")
RTff = — NV
s (2) =exp 2 ——z

The importance of these numbers is justified by the following
dynamical interpretation. The following “dynamical part” of the

dual space, where gb and all its iterations <;S” definea dynamical
A. Fel'shtyn University of Szczecin
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system, was defined [F.-Troitsky].

A class [p] is called a o-f-point, if p ~ po ¢ (so, these are the
points under consideration in above definitions)

An element [p] € r (respectively, in Tfor Fﬁ') is called
¢-irreducible if p o ¢" is irreducible for any n =0,1,2,.

Denote the correspondlng subspaces of r (resp., F,c or rﬁ') by re
(resp., rf or rf,).
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Lemma

Suppose, the representations p and p o ¢" are equivalent for some
n>1. Then [p] € T?.

Corollary

Generally, there is no dynamical system defined by ngS onAF (resp.,
¢, or [¢). We have only the well-defined notion of a ¢"-f-point.
A well-defined dynamical system exists on ['? (resp, Ff, or Fff) Its
n-periodic points are exactly ¢"-f-points.

The following statement evidently follows from. the-definitions.

A. Fel'shtyn University of Szczecin

Dynamical zeta functions



Suppose, ¢ : [ — I is an endomorphism and R(¢) < co. If TBFT
(resp., TBFTy) is true for I and ¢, then R(¢) = RT(¢) (resp,
R(¢) = RT'(¢) = RT(¢)).

If the suppositions keep for ¢”, for any n, then Ry(z) = RTy(z)
(resp., Ry(z) = RT;(Z) = RTg(z)).
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Suppose, TBFT (resp., TBFTy) is true for I and ¢"; and
R(¢") < oo for any n. If Ry(z) is rational, then RT(z) (resp.,
RT(;(Z) = RTg(z)) is rational. In particular, RTq’;(z) = RT(';(Z) is
rational in the following cases:

1. T is a finitely generated abelian group;

2. [ is a finitely generated torsion free nilpotent group;

3. T is a crystallographic group with diagonal holonomy Z, and ¢
is an automorphism.

A. Fel'shtyn University of Szczecin
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