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Subgroup growth

This talk will discuss joint work with Mark Berman.

Let G be a finitely generated group. For any n ≥ 1 it has finitely many
subgroups of index n.

Let a≤n = |{H ≤ G : [G : H] = n}|. Can consider variations of this
sequence:

aCn = |{H E G : [G : H] = n}|
a∧n = |{Ĥ ' Ĝ : [G : H] = n}|,

where Ĝ is the profinite completion of G .
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Dirichlet series

Theorem (Lubotzky-Mann-Segal)

Let G be a finitely generated residually finite group. Then there exists C
such that a≤n ≤ nC for all n if and only if G is virtually solvable of finite
rank.

To study the sequences a∗n (∗ ∈ {≤,C,∧}), make a Dirichlet series:

ζ∗G (s) =
∞∑
n=1

a∗nn
−s .

Example

Let G = Z. Then

ζ≤G (s) = ζCG (s) = ζ∧G (s) =
∞∑
n=1

1

ns
=
∏
p

1

1− p−s

is the Riemann zeta function.
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Linearization

If G is a torsion-free finitely generated group, there is a Lie ring L (a
finite-rank free Z-module with Lie bracket) with an index-preserving
correspondence:

subgroups ←→ subrings

normal subgroups ←→ ideals

H ≤ G : Ĥ ' Ĝ ←→ M ≤ L : M ' L

In this talk we concentrate on pro-isomorphic zeta functions.
Note that the condition M ' L does not correspond to closure under the
action of some subalgebra of EndZ(L), so pro-isomorphic zeta functions do
not in general fit into Roßmann’s framework of subalgebra zeta functions.
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Euler decomposition

Theorem (Grunewald-Segal-Smith, 1988)

Let G be a finitely generated torsion-free nilpotent group. Then

ζ∗G (s) =
∏
p

ζ∗G ,p(s),

for any ∗ ∈ {≤,C,∧}, where

ζ∗G ,p(s) =
∞∑
k=0

a∗pkp
−ks .

Similarly in the linear setting, ζ∗L(s) =
∏

p ζ
∗
L⊗ZZp

(s).

We investigate the behavior of ζ∧L (s) under base extension.
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Base extension

Our main question

Let Γ be a Z-group scheme such that Γ(Z) is finitely generated torsion-free
nilpotent. How does ζ∗G(OK )

(s) behave as K varies over number fields?

Analogously, if L is a nilpotent Z-Lie ring, how does ζ∧L⊗ZOK
(s) behave?

The simplest example is not encouraging. Let A be an abelian Z-Lie ring
of rank m. If [K : Q] = d , then A⊗ZOK is simply an abelian Z-Lie ring of
rank md .

Exercise

If A is an abelian Z-Lie ring of rank m, then

ζ≤A,p(s) = ζCA,p(s) = ζ∧A,p(s) =
1

(1− p−s)(1− p1−s) · · · (1− pm−1−s)
.

Five proofs of this in Lubotzky-Segal, e.g. count Smith normal forms.
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What we want

To understand why we are unhappy with this very clean result, compare it
with the following.

Let H = 〈x , y , z |[x , y ] = z〉 be the Heisenberg Lie ring:
the simplest non-abelian Lie ring.

Theorem (Grunewald-Segal-Smith)

Let K be a number field and let [K : Q] = d . Then

ζ∧H(s) = ζ(2s − 2)ζ(2s − 3)

ζ∧H⊗OK
(s) =

∏
p

1

(1− (Np)2d−2s)(1− (Np)2d+1−2s)

= ζK (2s − 2d)ζK (2s − 2d − 1).

Here p runs over the primes of K .
Np = |OK/p| is the norm of p.
ζK (s) =

∏
p

1
1−(Np)−s is the Dedekind zeta function of K .
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Pro-isomorphic zeta functions and p-adic integrals

Our aim: if we know ζ∧L (s), to predict the structure and properties of
ζ∧L⊗OK

(s). The Heisenberg example suggests that one should be able to do
this in some cases; the abelian example suggests it won’t be in all cases!

Let L be a Z-Lie ring, and let G = Aut L be its algebraic automorphism
group:

G(K ) = AutK (L⊗Z K )

for all field extensions K/Q.

Theorem

Normalize the Haar measure on G(Qp) so that µ(G(Zp)) = 1 and set
G+(Qp) = G(Qp) ∩M(Zp). Then,

ζ∧L,p(s) =

∫
G+(Qp)

| det g |sdµg .

Such p-adic integrals are of independent interest and have been studied for
decades (Satake, Tamagawa, Macdonald, etc.)
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Algebraic automorphism groups of extensions: the bad . . .

Question

Let L be a Q-Lie algebra (L = L⊗Z Q). Let AutL be its algebraic
automorphism group. View L ⊗Q K as a Q-algebra. What can we say
about the algebraic group Aut (L ⊗Q K ) for a number field K?

If Am is an m-dimensional abelian Q-Lie algebra, then AutAm ' GLm.

If [K : Q] = d , then Am ⊗Q K ' Amd as Q-Lie algebras.

Thus Aut (Am ⊗Q K ) ' GLmd .

These two groups have essentially nothing to do with each other.

This essentially accounts for the bad behavior of ζ∧Am
(s) under base

extension.
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Thus Aut (Am ⊗Q K ) ' GLmd .

These two groups have essentially nothing to do with each other.

This essentially accounts for the bad behavior of ζ∧Am
(s) under base

extension.
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. . . and the good

In contrast, if H = 〈x , y , z : [x , y ] = z〉 is the Heisenberg algebra, then

AutH '
{(

B ∗
0 detB

)
: B ∈ GL2

}
,

w.r.t. the basis (x , y , z). For any E/Q, clearly

(Aut (H ⊗Q K ))(E ) = AutE (H ⊗ K ⊗ E ) ⊃
AutK⊗E (H ⊗ K ⊗ E ) = (AutH)(K ⊗ E ) = ResK/Q(AutH)(E ).

Also, clearly

{(
Id ∗
0 Id

)}
⊂ Aut (H ⊗ K ).

It turns out that Aut (H ⊗ K ) contains essentially nothing else. We give
this phenomenon a name.
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Goodness

Definition

Let L be a Q-Lie algebra and Z a characteristic ideal. We say that L is
Z -good if for all finite extensions K/Q:

Aut (L ⊗Q K ) = ResK/Q(Aut (L)) · (ker(AutL → AutL/Z )) o (finite).

Example: H is Z -good, for Z = [H,H] = Z (H).

Proposition

Suppose that L is Z -good for a central Z . Then for all number fields K
there is a fine Euler decomposition

ζ∧L⊗ZOK
(s) =

∏
p

ζ∧L⊗ZOK ,p
(s),

where p runs over the primes of K and the local factor ζ∧L⊗ZOK ,p
(s)

depends only on the isomorphism class of the local field Kp.
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Segal’s criterion

A criterion for goodness: for any ideal I ≤ L and subset S ⊂ L, set

CL/I (S) = {x ∈ L : [s, x ] ∈ I for all s ∈ S}.

Theorem (Segal, 1989)

Let L be a k-Lie algebra. Let Z ⊆ M ⊆ [L,L] be characteristic ideals of L
such that dim(L/M) > 1. Set

X (M,Z ) = {x ∈ L \M : CL/[M,L](x) = M + kx}
Y(M,Z ) = {x ∈ L \M : CL/[Z ,L](CL/[Z ,L](x)) = Z + kx}

X (M,Z ) and Y(M,Z ) each generate L as Lie algebra ⇒ L is Z -good.

Moral: If L has many elements whose centralizer is as small as possible, it
is Z -good. Grunewald-Segal-Smith applied this result to free nilpotent Lie
algebras (note Heisenberg is the free nilpotent algebra of class two on two
generators).
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Centrally amalgamated copies of Heisenberg I

Recall that

ζ∧H⊗OK
(s) =

∏
p

1

(1− (Np)2d−2s)(1− (Np)2d+1−2s)
.

Let Hm be the Lie ring obtained by taking m copies of H and identifying
their centers. Hm is spanned by x1, . . . , xm, y1, . . . , ym, z , where

[xi , yj ] =

{
z : i = j

0 : i 6= j .

Lemma (du Sautoy and Lubotzky, 1996)

For all m ≥ 1 we have AutHm '
{(

A ∗
0 λ

)
: AΩAT = λΩ

}
, where

Ω =

(
0 Im
−Im 0

)
. Note the reductive part is GSp2m.
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Centrally amalgamated copies of Heisenberg II

We would like to prove Hm is Z -good, for Z = [Hm,Hm] = Z (Hm), and in
fact this is true, but Segal’s criterion won’t do it:

Lemma

For L a nilpotent Q-Lie algebra of class 2, if dimQ L > 2 dimQ[L,L] + 1,
then L fails Segal’s criterion for all pairs (M,Z ).

In particular, the lemma applies to Hm for all m > 1. Noting that Hm is
generated by elements with centralizer of codimension 1, we use a criterion
orthogonal to Segal’s.

Proposition

Suppose L is nilpotent and CL/[Z ,L](L) ⊆ [L,L]. Suppose L is generated
as an algebra by Y(Z ,Z ) and also by a finite set S of elements with
centralizer of codimension 1, such that the non-commutation graph of S is
connected (in particular, L is indecomposable). Suppose a technical
condition, that E -linear automorphisms of L ⊗ K are not hopelessly far
from being E ⊗ K -linear. Then L is Z -good.
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Centrally amalgamated copies of Heisenberg III

One checks that Hm satisfies the conditions and is Z -good. One deduces
that

ζ∧Hm⊗OK ,p
=

∫
GSp2m(Kp)+

| detA|(1+1/m)s−2d
Kp

dµ(A).

Such integrals have been studied since Satake in the 1960’s. It should
follow from Igusa (1989) that this is an Igusa function

ζ∧Hm⊗OK ,p
=

1

1− X0

∑
I⊆[m−1]

(
m

I

)
(Np)−1

∏
i∈I

Xi

1− Xi
,

where Xi = (Np)
∑i

j=1(m+1−j)+2md−(m+1)s and d = [K : Q].
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Centrally amalgamated copies of Heisenberg IV

Macdonald has formulas for these integrals:
m∑

k=0

1

1− (Np)(k+1)+···+m−2md−(m+1)s

∏
1≤i<j≤m

1− qikqjk(Np)−1

1− qikqjk

m∏
i=1

1

1− qik
,

where qik =

{
(Np)i : i ≤ k

(Np)−i : i > k .
.

There is a functional equation:

ζ∧Hm⊗OK ,p
(s)|q 7→q−1 = (−1)m+1(Np)m

2+4md−2(m+1)sζ∧Hm⊗OK ,p
(s).

Note that, by contrast, ζCHm⊗OK ,p
(s) has no fine Euler decomposition, but

it does not increase in complexity (for fixed K ) as m increases, only shifts
the numerical data (MMS-Voll, Bauer).

Challenge

Does there exist a non-good Lie algebra that doesn’t have an abelian
direct summand?
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Macdonald has formulas for these integrals:
m∑

k=0

1

1− (Np)(k+1)+···+m−2md−(m+1)s

∏
1≤i<j≤m

1− qikqjk(Np)−1

1− qikqjk

m∏
i=1

1

1− qik
,

where qik =

{
(Np)i : i ≤ k

(Np)−i : i > k .
.

There is a functional equation:

ζ∧Hm⊗OK ,p
(s)|q 7→q−1 = (−1)m+1(Np)m

2+4md−2(m+1)sζ∧Hm⊗OK ,p
(s).

Note that, by contrast, ζCHm⊗OK ,p
(s) has no fine Euler decomposition, but

it does not increase in complexity (for fixed K ) as m increases, only shifts
the numerical data (MMS-Voll, Bauer).
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D∗-Lie algebras

Grunewald and Segal classified finitely generated torsion-free nilpotent
groups of class two with center of rank two. The classification includes the
D∗ groups, which come in two families.

The associated Lie algebras, when
odd-dimensional, are of the form

〈x1, . . . xm, y1, . . . , ym+1, e, f |[xi , yi ] = e, [xi , yi+1] = f 〉.

(Also have a family of even-dimensional algebras, parametrized by
primitive polynomials.)

The pro-isomorphic zeta functions of these Lie algebras were computed by
Berman, Klopsch, and Onn. Knowing that these algebras are Z -good,
where Z is the center, would enable us to compute the pro-isomorphic zeta
functions of their base changes. The proposition above does not apply to
these algebras, but a different one, weaker and more technical, does.
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A family of maximal class Lie algebras

Let c ≥ 2, and let Ac = 〈z , x1, . . . , xm|[z , xi ] = xi+1, 1 ≤ i ≤ m − 1〉.

These algebras satisfy Segal’s criterion with M = [Ac ,Ac ] and Z = Z (Ac).

ζ∧Ac⊗OK ,p
(s) =

1

(1− (Np)(c−1)(2d+c−2)−((c2)+1)s)(1− (Np)2d+2c−3−cs)
.

The functional equation has symmetry factor (Np)c
2+2cd−c−1−((c+1

2 )+1)s .
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A family with no functional equation

Recently Berman and Klopsch constructed a 25-dimensional nilpotent
Q-Lie algebra L whose local pro-isomorphic zeta functions have no
functional equation. One checks that Segal’s criterion is satisfied.

ζ∧L⊗OK ,p
(s) =

1 + q84+201d−102s + 2q85+201d−102s + 2q170+402d−204s

(1− q171+402d−204s)(1− q84+201d−102s)
,

where q = Np.

Thus we obtain an infinite family of Lie algebras with no functional
equation.
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Questions for the future

I Characterize pairs (L,Z ), where L is a Lie algebra, Z ⊆ L is a central
ideal, and L is Z -good.

I If L is Z -good, is it always the case that, for p|p, the local zeta
function ζ∧L⊗K ,p(s) is obtained from ζ∧L,p(s) by replacing p by Np and
replacing s with a linear function as + b, for suitable a, b depending
linearly on d = [K : Q].

I What are a and b? (even in nilpotency class two, we have no
conjecture lacking counterexamples).

I What does one need to know to determine the abscissa of
convergence of ζ∧L⊗K (s)? Does it always vary linearly with d?
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Thank You!
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