Singularities, Monodromy and Zeta functions Blatt 2

Exercises for discussion in Übung on 26.10.2018

Aufgabe 1:

Suppose $X \subset \mathbb{Q}_p^m$ and $Y \subset \mathbb{Q}_p^n$ are semi-algebraic sets. Let $f: X \to Y$ be a semi-algebraic map, meaning its graph $\{(x, f(x)) | x \in X\} \subset \mathbb{Q}_p^{m+n}$ is semi-algebraic.

- (a) Prove that, if $V \subset X$ is semi-algebraic, then f(V) is semi-algebraic.
- (b) Assuming $W \subset Y$ is semi-algebraic, prove that $f^{-1}(W)$ is semi-algebraic.
- (c) Let $g: Y \to \mathbb{Q}_p^k$ be semi-algebraic. Prove that $g \circ f$ is semi-algebraic.

Aufgabe 2:

The angular component map on \mathbb{Q}_p is the map $\mathrm{ac}_1 : \mathbb{Q}_p \to \mathbb{F}_p$ such that,

- $ac_1(0) = 0;$
- for $a \in \mathbb{Q}_p^{\times}$ writing $a = \sum a_i p^i$ with $a_i \in \{1, ..., p-1\}$, $\mathrm{ac}_1(a) = a_{v(a)}$.

That is, the angular component of a non-zero element is the coefficient of the leading term in its *p*-adic expansion.

Let μ be the Haar measure on \mathbb{Q}_p .

Compute the measures of the following sets, which we will later see are semi-algebraic:

(a) $\mu(\{x \in \mathbb{Z}_p | \operatorname{ac}(x) = 1\});$ (b) $\mu(\{x \in \mathbb{Z}_p | 2 \mid v(x)\}).$

Aufgabe 3:

Prove that for $p \ge 3$, an element $x \in \mathbb{Q}_p$ is a square, if and only if $2 \mid v(x)$ and $ac_1(x)$ is a square. Hint: Use Hensel's Lemma.