

Übungen zur Analysis I

- 1. (a) (2P) Bestimmen Sie die Ableitung der Funktion $f: \mathbb{R} \to \mathbb{R}, x \mapsto \cos^2(x + \frac{\pi}{2})$.
 - (b) (2P) Bestimmen Sie die Ableitung der Funktion $g: \mathbb{R} \to \mathbb{R}, x \mapsto \exp(-(x-1)^2)$.
 - (c) (6P) Bestimmen Sie für f und g wie in den Teilen (a) und (b) Konstanten a,b,c,d so, dass die Funktion

$$h \colon \mathbb{R} \to \mathbb{R}, \quad x \mapsto \begin{cases} f(x), & x \le 0, \\ a + bx + cx^2 + dx^3, & 0 < x < 1, \\ g(x), & x \ge 1, \end{cases}$$

differenzierbar ist.

2. Sei $D \subseteq \mathbb{R}$ offen und sei $f: D \to \mathbb{R}$ differenzierbar mit $f(x) \neq 0$ für alle $x \in D$. Wir definieren eine Funktion $L(f): D \to \mathbb{R}$ durch

$$L(f)(x) = \frac{f'(x)}{f(x)}.$$

L(f) ist die logarithmische Ableitung von f. Zeigen Sie

- (a) (2P) L(Cf) = L(f) für jede Konstante $C \in \mathbb{R} \setminus \{0\}$.
- (b) (3P) L(fg) = L(f) + L(g), falls auch $g: D \to \mathbb{R}$ differenzierbar ist mit $g(x) \neq 0$ für alle $x \in D$.
- (c) (5P) $L(f^n) = nL(f)$ für jedes $n \in \mathbb{N}$.
- 3. Stellen Sie für die folgenden Paare (f,g) von Funktionen jeweils fest, welche der Aussagen f(x) = O(g(x)), f(x) = o(g(x)), g(x) = o(f(x)) bzw. g(x) = O(f(x)) für $x \to \infty$ gelten.

(a) (3P)
$$f(x) = e^x,$$
 $g(x) = e^{\sqrt{x}},$

(b) (3P)
$$f(x) = \frac{e^x}{x},$$
 $g(x) = x^3,$

(c) (4P)
$$f(x) = e^{\log^2(x)}, \qquad g(x) = x^2.$$

4. Es sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Zeigen Sie:

- (a) (6P) f ist differenzierbar.
- (b) (4P) f' ist in 0 unstetig.

Abgabe: Mo, 16.06., 10:00 im ILIAS

Besprechung: 18. Juni 2025

Laden Sie bitte Ihre Lösungen im ILIAS hoch. Die Bearbeitungen sind einzeln abzugeben, also nur ein Name pro Blatt.