
Introduction to (the model theory of) valued

fields

Franziska Jahnke*

12.-16.09.2022

The aim of these lectures is to provide an introduction to valued fields and
semi-algebraic sets, with a particular view towards model-theoretic methods.
The lectures were given at the Summer School on Motivic Integration which
took place in September 2022 at the HHU Düsseldorf.1
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1 Lecture 1

1.1 Valued fields

Definition 1.1.1. A valuation on a field K is a map v : K ↠ Γ ∪ {∞}, where (Γ ,+,⩽) is an
ordered abelian group (oag)2, such that

1. v(x) = ∞ ⇐⇒ x = 0,

2. v(xy) = v(x) + v(y),

3. v(x+ y) ⩾ min{v(x), v(y)}.

Remark 1.1.2. If | · | : K → R⩾0 is an ultrametric absolute value, then fixing any b ∈ R>1

gives rise to a valuation via v(x) := − logb(|x|). In this case, we have v(K×) ⊆ R.

Example 1.1.3 (Examples or ordered abelian groups). • Any subgroup (Γ ,+) ⩽ (R,+)

is an oag, with the order being induced by the (unique) order on R. We call these rank 1
(they have no non-trivial convex subgroup).

• Given two oags Γ and ∆, the lexicographic product Γ ⊕lex ∆ is given by component-wise
addition on Γ ×∆ with the lexicographic ordering <lex: for any γ,γ ′ ∈ Γ and δ, δ ′ ∈ ∆,
define

(γ, δ) ⩽lex (γ ′, δ ′)⇐⇒ γ < γ ′ or (γ = γ ′ and δ ⩽ δ ′)

One (explicit) example is Z⊕lex Z. If Γ and ∆ are nontrivial, the lexicographic sum does
not have rank 1: {0}⊕lex ∆ is a non-trivial convex subgroup.

Example 1.1.4 (Examples of valued fields). • Any field with Γ = {0} with v(K×) = {0}

and v(0) = ∞. This is called the trivial valuation.

• The p-adic valuation vp on Q: for x ∈ Q×, write x = pn c
d with c,d ∈ Z, p ∤ c,d. Then

vp(x) = n ∈ Z.

• The p-adic valuation on the field of p-adics Qp: consider Qp := {
∑

i⩾m aip
i | m ∈

Z,ai ∈ {0, 1, . . . p− 1}} with carry-over on sum and multiplication. Define

vp(
∑
i⩾m

aip
i) = min{i | ai ̸= 0}.

We will see that this coincides on Q with vp as defined in the bullet point above.

• The power series valuation vt on a power series field: Consider K = k((t)). Write
vt(

∑
i⩾m ait

i) := min{i | ai ̸= 0}.

• Note that so far, all of our examples had rank 1 (indeed, Z) value groups. More generally,
let K = k((Γ)) := {

∑
γ∈Γ aγt

γ | {γ | aγ ̸= 0} is well-ordered}. Write vΓ (
∑

γ aγt
γ) :=

min{γ | aγ ̸= 0}.

2that is, an abelian group with a total order such that + and ⩽ are compatible
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1.2 Basic properties and associated quantities

We will often write vK for the value group Γ of (K, v). Here is a list of basic properties:

1. v(1) = 0: indeed, v(1) = v(1 · 1) = v(1) + v(1),

2. v(x) = v(−x) = −v(x−1) for all x ∈ K: note first that 0 = v(1) = v(−1) + v(−1),
so (as ordered abelian groups are torsion-free), we have v(−1) = 0. The rest now
follows immediately from the axioms for valuations.

3. v(x) < v(y) implies that v(x+ y) = min{v(x), v(y)} = v(x): indeed, if v(x+ y) >
v(x) then v(x) = v(x+ y− y) ⩾ min{v(x+ y), v(−y)} = min{v(x+ y), v(y)} > v(x),
a contradiction.

Using these properties, it is easy to verify that the p-adic valuation we defined on Q and
the restriction of the p-adic valuation we defined on Qp coincide on Q: by property 2
above, it suffices to show that they coincide on any n ∈N \ {0}. Writing n base p, we get
a finite p-adic expansion

n = a0p
0 + . . . amp

m

(for somem ⩽ n) and we get min{i | ai ̸= 0} = max{j | pj | n}.

Remark 1.2.1. Any valued fields comes naturally with the following structure:

• Ov := {x ∈ K | v(x) ⩾ 0} is a valuation ring of K, i.e. for every x ∈ K we have x ∈ Ov or
x−1 ∈ Ov,

• Ov has a unique maximal ideal, mv := {x ∈ K | v(x) > 0}, as mv = Ov \ O
×
v

• the quotient Kv := Ov/mv is called the residue field of (K, v).

Example 1.2.2. We work out the valuation ring, maximal ideal and residue field for each of the
valued fields discussed in example 1.1.4:

1. trivial valuation on K: Ov = K, mv = {0}, Kv = K,

2. p-adic valuation on Q: Ovp := {c/d ∈ Q | (c,d) = 1, d ̸= 0, p ∤ d} = Z(p),
mvp = pZ(p), Kv = Z(p)/pZ(p) ≃ Fp,

3. p-adic valuation on Qp: Ovp := {
∑

i⩾0 aip
i | ai ∈ {0, . . . p− 1}} = Zp (i.e., the ring of

p-adic integers), with maximal ideal mvp = pOvp ; similarly, Kv ≃ Fp,

4. power series: for K = k((Γ)), we get Ov = k[[Γ ]] and Kv = k.

1.3 Topology and Haar measure

We now take a step aside to introduce the Haar measure on the p-adic numbers.

Definition 1.3.1. For γ ∈ Γ , y ∈ K, we define

1. B>γ(y) := {x ∈ K | v(x− y) > γ}, the open ball of radius γ around y,

2. B⩾γ(y) := {x ∈ K | v(x− y) ⩾ γ}, the closed ball of radius γ around y.
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Note that we have B>0(0) = mv ⊂ B⩾0(0) = Ov.

Lemma 1.3.2. By the ultrametric inequality, for any two balls B1 and B2 we either have
B1 ⊆ B2, B2 ⊆ B1 or B1 ∩B2 = ∅.

Proof. Indeed, given any ball B⩾γ(y) and any c in this ball, B⩾γ(c) = B⩾γ(y): for
any x ∈ B⩾γ(y), we have v(x− c) = v(x− y+ y− c) ⩾ min{v(x− y), v(y− c)} ⩾ γ.
This gives one inclusion. The other is symmetric. The same argument works for open
balls.

As a consequence, open (respectively, closed) balls form a neighbourhood base of
an Hausdorff field topology τv on K. Indeed, the naming ‘open’ and ‘closed’ is just
suggestive: K \B>γ(y) =

⋃
v(b−y)<γ B>v(b−y)(b) hence B>γ(y) is also closed, so it is

a clopen; similarly for ‘closed’ balls. In particular, the topology generated by the open
balls coincides with that generated by the closed balls.

Exercise 1.3.3. Show that τv is discrete if and only if v is the trivial valuation.

Remark 1.3.4. With respect to τvp , Qp is locally compact: indeed, Zp is compact (the rest
follows from translations), which can be seen as either because of the isomorphism Zp ≃
lim←Z/pnZ ⊆closed

∏
n Z/pnZ (and the latter is compact by Tychonov’s theorem as its a

product of compact spaces since each Z/pNZ is finite) or because Zp is complete and totally
bounded. In both of these arguments, the fact that Kv is finite plays an important role. If
Kv is infinite, τv is not locally compact, as Ov :=

⊔
r∈R(r+mv) with R ⊆ O×v a system of

representatives for Kv will not admit a finite open subcover.

For a topological space τ, we use B to denote the collection of Borel sets, that is the
σ-algebra3 generated by the open sets.

For τ a group topology on (G, ·), S ⊆ G and g ∈ G, we use

g · S = {g · s | s ∈ S}

to denote the left translate of S. Note that if S is Borel, then g · S is also Borel.

Definition 1.3.5. Let (G, ·, τ) be a topological group. A Borel measure µ on G is a measure on
G that is defined on B. A Borel measure is called regular if all of the following conditions hold:

• µ(C) <∞ for all compact sets C

• µ(U) = sup{µ(C) | C ⊆ U, C compact} for any U ⊆ G open

• µ(A) = inf{µ(U) | A ⊆ U, U open} for any A ∈ B

Theorem 1.3.6 (Haar). Any locally compact, Hausdorff topological group admits a Haar
measure, i.e., a left-invariant regular non-zero Borel measure µ. If µ ′ is another such measure,
then there is α ∈ R such that µ = α · µ ′.

Note that if µ is a Haar measure on G, then so is α · µ for any α ∈ R>0. As Zp is
compact (and hence has finite measure with respect to any Haar measure on Qp), we
may fix the unique Haar measure µ such that µ(Zp) = 1. Then, we get µ(pZp) =

1
p ,

and for any y ∈ K and γ ∈ Z we have µ(B⩾γ(y)) =
1
pγ and µ(B>γ(y)) =

1
pγ+1 .

3Recall that a σ-algebra is closed under countable unions, countable intersections and complements

4



Exercise 1.3.7. Verify that

µ({b ∈ Zp : 3 | vp(b)} =
1− 1/p

1− (1/p)3

holds.

2 Lecture 2

2.1 Semi-algebraic sets

Throughout the section, let (K, v) be a valued field.

Definition 2.1.1. • A subset A ⊆ Kn is called semi-algebraic if A is a finite Boolean
combination of sets given by polynomial equalities (i.e. equalities of the form f(x) = 0,
f ∈ K[x1, . . . xn]) and valuation inequalities (i.e. inequalities of the form v(g1(x)) ⩾

v(g2(x)), g1,g2 ∈ K[x1, . . . xn]).

• A subset A ⊆ Kn is called constructible if A is a finite Boolean combination of sets given
by polynomial equalities.

In particular, constructible sets are semi-algebraic.

Example 2.1.2. A subset A ⊆ K1 constructible iff A cofinite or finite. On the other hand,
A ⊆ K1 semi-algebraic iff A is a Boolean combination of singletons and balls (exercise!).

The following theorem was proved independently by Tarski and Chevalley (albeit in
very different formulations and with rather different proofs).

Theorem 2.1.3 (Tarski/Chevalley). If K is algebraically closed, then any projection pr: Kn →
Ki (for n ⩾ i) of a constructible subset of Kn is a constructible subset of Ki.

Remark 2.1.4. The theorem above holds precisely in finite and in algebraically closed fields; e.g.
in K = R you can project x2 − y = 0 to the positive reals, which are not constructible.

Our next big aim will be to approach the following theorem model-theoretically:

Theorem 2.1.5 (A. Robinson). Let (K, v) a valued field such that K is algebraically closed.
Then, the projection of any semi-algebraic set is semi-algebraic.

2.2 First attempt at first-order logic

Definition by example: the language of rings, Lring = {0, 1,+,−, ·}. The language of
ordered abelian groups Loag = {0,+,−,⩽}. The language of ordered monoids L+

oag =

{0,+,−,⩽,∞}.

Definition 2.2.1. A first-order language L is given by

1. a set of constant symbols {ci | i ∈ I}, e.g. 0, 1, ∞,

2. a set of function symbols {fj | j ∈ J}, each with a fixed arity, e.g. + and · of arity 2 and −

of arity 1,
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3. a set of relation symbols {Rk | k ∈ K}, each with a fixed arity, e.g. ⩽ of arity 2,

4. a binary relation =, a fixed set of variables {vi | i ∈N},

5. connectives ∧, ∨, ¬,→,←→,

6. quantifiers ∀ and ∃.

An L-structure consists of nonempty set together with interpretation for each of the
symbols. In particular, any unitary ring is naturally an Lring-structure, with the symbols
interpreted in the obvious way.

L-formulas are built “in the obvious way”, such that if you plug something into the
variables that are not under the influence of a quantifier, you should get a statement that
is either true or false. Again, definition by example: in the language of rings,

1. ∃y(y · y = x) makes sense,

2. y2 := y · y does not make sense (in fact, it is a term, not a formula).

Definition 2.2.2. A formula is quantifier-free if no quantifiers occur.

Example 2.2.3. Quantifier-free Lring-formulas are precisely finite Boolean combinations of
formulae of the form f(x̄) = 0, for f ∈ Z[x1, . . . xn].

Remark 2.2.4. If K is a field, then quantifier-free L(K)-formulae (that is, Lring-fomulas where
one additionally allows constants for the elements of K) define constructible sets, and viceversa.

Theorem 2.2.5. (Tarski) If K is algebraically closed, let T be the L-theory saying “K is a field”
and “every polynomial of degree n has a root in K”, for n ⩾ 2; then T eliminates quantifiers.

Definition 2.2.6. A theory4 T eliminates quantifiers if for every L-formula ϕ(x̄) there is a
quantifier-free L-formula ψ(x̄) such that T ⊢ ∀x(ϕ(x) ←→ ψ(x)), i.e. in all models of T the
two formulae define the same set.

Proof. (Sketch: why Chevalley and Tarski morally say the same thing) Enough to check
ϕ(x̄) ≡ ∃zϕ̃(x̄, z) is equivalent to a quantifier-free formula. Then ϕ̃(x̄, z) defines a
constructible subset of K. Then prx̄(ϕ̃(x̄, z)) is constructible, which gives the desired
qf-formulae equivalent to ϕ(x̄).

2.3 Ordered abelian groups of higher rank occur naturally in model theory

Theorem 2.3.1. (Compactness) If T is an L-theory, and every finite subset of T has a model,
then T has a model.

As a consequence, if Γ ̸= {0} is an ordered abelian group in Loag, then there is Γ∗ ≡ Γ
(i.e. the same Loag-sentences hold in Γ and Γ∗) such that Γ∗ has a non-trivial convex
subgroup. Indeed, consider L ′ = Loag ∪ {c, c ′} and the L ′-theory given by

T = ThLoag(Γ)∪ {n · c
′ < c) | n ∈N}.

4A theory T is a set of L-sentences (formulae without free variables). Intuitively, a theory is a set of axioms,
and models are structures where these axioms hold. For example, the field axioms form an Lring-theory,
with models being precisely all fields.
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Every finite subsets of T has a model (it is finitely satisfiable in Γ !) and this gives you an
element c ′ whose convex hull is a proper subgroup.

Even if we are only interested in valued fields with rank-1 value group, for a model-
theoretic study, we will have to consider value groups of higher rank!

3 Lecture 3

3.1 Second attempt at first-order logic

Goal: capture v: K↠ Γ ∪ {∞} model theoretically.
We will work with LΓ , a two-sorted language with one sort for K and one for Γ ∪ {∞}.

On K, we have the language of rings {0, 1,+, ·,−}; on Γ ∪ {∞}, we have the language
{0,+,⩽,∞}; we have a function symbol v: K → Γ ∪ {∞} between the sorts. Variables
come attached with a sort, and quantifiers only run over a sort.

Definition 3.1.1. We will call ACVF the LΓ -theory given by,

1. K ⊨ ACF, i.e., K is algebraically closed,

2. v: K→ Γ ∪ {∞} is a non-trivial valuation (in particular, Γ ⊨ OAG).

Remark 3.1.2. If (K, v) ⊨ ACVF, then

1. Γ is divisible: indeed, if n > 0 and γ ∈ Γ , say γ = v(a) for some a ∈ K, then xn − a has
a root b in K, and then v(a) = v(bn) = nv(b),

2. Kv is algebraically closed: indeed, if we take P(X) = Xn +
∑n−1

i=0 aiX
i ∈ Ov[X], then all

roots of P lie in Ov. Otherwise, if v(b) < 0 then for all i < n, v(bi) < 0, so

nv(b) < iv(b) ⩽ v(ai)︸ ︷︷ ︸
⩾0

+iv(b)

and thus v(P(b)) = nv(b) < 0. Thus, res(P) = Xn +
∑n−1

i=0 res(ai)Xi splits in Kv.

The converse does not hold, the problem arises through immediate extensions. For the converse
to hold, one needs to assume further that (K, v) satisfies Hensel’s Lemma and is defectless.

Theorem 3.1.3. (A. Robinson, Weispfenning) ACVF eliminates quantifiers in LΓ .

3.2 Quantifier elimination

The key step for Robinson’s theorem is the following embedding lemma:

Lemma 3.2.1. Let M and N be models of ACVF and let A ⊆ M be an LΓ -substructure.
Assume N is |M|+-saturated. Then any LΓ -embedding f: A→ N extends to an LΓ -embedding
g:M→ N.

If you don’t like saturation: you can prove the lemma under the assumption that N
is |M|+-spherically complete (that is: in N, every nested sequence of |M|-many balls is
non-empty). One then proves quantifier elimination by a back-and-forth argument.
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Theorem 3.2.2. (Macintyre, McKenna, van den Dries)

1. If K is infinite, and Th(K) eliminates quantifiers in the language of rings, then K is
algebraically closed.

2. If (K, v) eliminates quantifiers, and v is non-trivial, then (K, v) ⊨ ACVF.

3.3 What about the p-adics or C((t))?

Consider Pn(X) ≡ ∃Y(Yn = X).

Lemma 3.3.1. For every n ⩾ 2, Pn(Qp) is not semi-algebraic.

Proof. Assume Pn(Qp) is semi-algebraic. Then Qp \ Pn(Qp) is also semi-algebraic. Note
that if Pn(Qp) does not contain a ball around 0, then there would be a “punctured” ball
around 0 in the complement.

In particular, there is B around 0 such that either B ⊆ Pn(Qp) or B \ {0} ⊆ Pn(Qp)
c.

This means that, for example, there is γ such that v(x) ⩾ γ =⇒ x ∈ Pn(Qp). However,
pnγ+1 has valuation ⩾ γ but it is not an n-th power. Similarly for the second case
(since n÷ vp(pn). In other words, any ball B around 0 must intersect both Pn(Qp) and
Pn(Qp)

c.

Note that by substituting p with t, we obtain the same result in C((t)).
Nonetheless, using these Pn’s, we still obtain control over the definable sets:

Theorem 3.3.2 (Macintyre). For each n ⩾ 1, let Pn(X) denote a unary relation interpreted
as Pn(X) ≡ ∃Y(Yn = X). Then the theory Th(Qp) eliminates quantifiers in the Macintyre
language LMac = Lring ∪ {Pn | n ⩾ 1}.

In other words, every definable set in the language of rings is equivalent — modulo
Th(Qp) — to a Boolean combination of sets of the form f(x̄) = 0 and Pn(g(x̄)), for
f(x̄) and g(x̄) polynomials over Z. In particular, all definable sets in Qp are Boolean
combinations of sets of the form f(x̄) = 0 and Pn(g(x̄)), for f,g ∈ Qp[X1, . . . ,Xm].

Theorem 3.3.3 (Folklore). The same holds over C((t)).

BUT wait a moment, what happened to my semi-algebraic sets? Are they still defin-
able?

3.4 Definability of valuations

Theorem 3.4.1 (Hensel’s Lemma). The valued fields (Qp, vp) and (C((t)), vt) are henselian,
i.e. given b ∈ Ov and f ∈ Ov[X] with f(b) ∈ mv, f ′(b) /∈ mv, then there is β ∈ Ov with
f(β) = 0 and β− b ∈ mv.

Proof. By Newton approximation. Choose a0 = b and define a sequence an+1 =

an −
f(an)
f ′(an)

. It is a Cauchy sequence with respect to the p-adic (respectively, t-adic)
metric. By completeness, an converges to some β ∈ Ov which is a root of f.

Theorem 3.4.2 (J. Robinson). We can define Zp ⊆ Qp in the language of rings via φp(X) ≡
∃Y(Y2 = 1+ pX2), for p ̸= 2, and via φ2(X) ≡ ∃Y(Y3 = 1+ pX3) in Q2. Similarly, we can
define C[[t]] ⊆ C((t)) via φt(X) ≡ ∃Y(Y2 = 1+ tX2).
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In Qp, this implies that all closed balls are definable without parameters in the lan-
guage of rings (note that p = 1+ . . . 1). Since mv is then also definable without parame-
ters (as mv = pOv), all open balls are also definable. Note that we haveφp ≡ P2(1+pX2)

(resp. φ2 ≡ P3(1+ pX3)), so Zp and mv (and hence all balls) are indeed definable with-
out quantifiers (and without parameters) in LMac.

Proof. (for p ̸= 2 in Qp) Take any b ∈ Qp. We want to show that b ∈ Zp ⇐⇒
∃Y(Y2 = 1 + pb2). First suppose that v(b) < 0: since 2 ∤ v(p), then 2 ∤ v(b2p) < 0,
so v(b2p) = v(1+ b2p) is not divisible by 2, and thus 1+ b2p /∈ P2(Qp). Vice versa,
suppose b ∈ Ov and consider f(Y) = Y2 − 1− b2p. This is a polynomial over Zp and we
have f(1) ∈ pZp, f ′(1) = 2 /∈ pZp. By henselianity, we get β ∈ Zp such that f(β) = 0,
i.e. β2 = 1+ b2p.

In (C((t)), vt), the formulaφt(X) used a parameter for t. This is however not necessary:

Theorem 3.4.3 (Ax). Let K be a field with char(K) ̸= 2. In (K((t)), vt), the valuation ring Ov

is defined by the (parameter-free) Lring-formula

Φ(X) ≡ ∃W, Y∀U,X1,X2∃Z∀Y1, Y2 [(Z2 = 1+WX2
1X

2
2 ∨ Y

2
1 ̸= 1+WX2

1 ∨ Y
2
2 ̸= 1+WX2

2)

∧U2 ̸=W ∧ Y2 = 1+WX2].

The formula Φ(X) takes the union over all φ(X,a) ≡ ∃Y (Y2 = 1 + aX2) for a ∈ K((t)),
provided that a is not a pth power and that φ(X,a) is closed under multiplication.

Thus, one can deduce that all balls in C((t)) are again definable without quantifiers
(and without parameters) in LMac.

4 Some literature for further reading

4.1 Model theory

1. Tent, Ziegler — A course in model theory

2. Hils, Loeser — A first journey through logic

3. Marker — Model theory: an introduction

4.2 Model theory of valued fields

1. van den Dries — Lectures on the model theory of valued fields (chapter in Model theory
in algebra, analysis and arithmetic)

2. Hils — Model theory of valued fields (chapter in Lectures in model theory, see also the
previous chapter Jahnke — An introduction to valued fields in the same volume)

4.3 Model theory of the p-adics

1. Prestel, Roquette — Formally p-adic fields

2. Macintyre’s original paper
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