Introduction to (the model theory of) valued fields

Franziska Jahnke*

12.-16.09.2022

The aim of these lectures is to provide an introduction to valued fields and semi-algebraic sets, with a particular view towards model-theoretic methods. The lectures were given at the *Summer School on Motivic Integration* which took place in September 2022 at the HHU Düsseldorf.¹

Contents

1	Lecture 1		2
	1.1	Valued fields	2
	1.2	Basic properties and associated quantities	3
	1.3	Topology and Haar measure	3
2	Lecture 2		5
	2.1	Semi-algebraic sets	5
	2.2	First attempt at first-order logic	5
	2.3	Ordered abelian groups of higher rank occur naturally in model theory .	6
3	Lecture 3		
	3.1	Second attempt at first-order logic	7
	3.2	Quantifier elimination	7
	3.3	What about the p-adics or $\mathbb{C}((t))$?	8
	3.4	Definability of valuations	8
4	Some literature for further reading		9
	4.1	Model theory	9
	4.2	Model theory of valued fields	9
	4.3	Model theory of the p-adics	9

^{*}Notes taken by Simone Ramello

¹Many thanks to the organizers!

1 Lecture 1

1.1 Valued fields

Definition 1.1.1. A valuation on a field K is a map $v : K \twoheadrightarrow \Gamma \cup \{\infty\}$, where $(\Gamma, +, \leq)$ is an ordered abelian group $(oag)^2$, such that

- 1. $v(x) = \infty \iff x = 0$,
- 2. v(xy) = v(x) + v(y),
- 3. $v(x+y) \ge \min\{v(x), v(y)\}.$

Remark 1.1.2. *If* $|\cdot|$: $K \to \mathbb{R}_{\geq 0}$ *is an ultrametric absolute value, then fixing any* $b \in \mathbb{R}_{>1}$ *gives rise to a valuation via* $v(x) := -\log_{b}(|x|)$. *In this case, we have* $v(K^{\times}) \subseteq \mathbb{R}$.

- **Example 1.1.3** (Examples or ordered abelian groups). Any subgroup $(\Gamma, +) \leq (\mathbb{R}, +)$ is an oag, with the order being induced by the (unique) order on \mathbb{R} . We call these rank 1 (they have no non-trivial convex subgroup).
 - Given two oags Γ and Δ, the lexicographic product Γ ⊕_{lex} Δ is given by component-wise addition on Γ × Δ with the lexicographic ordering <_{lex}: for any γ, γ' ∈ Γ and δ, δ' ∈ Δ, define

$$(\gamma, \delta) \leq_{\text{lex}} (\gamma', \delta') \iff \gamma < \gamma' \text{ or } (\gamma = \gamma' \text{ and } \delta \leq \delta')$$

One (explicit) example is $\mathbb{Z} \oplus_{\text{lex}} \mathbb{Z}$ *. If* Γ *and* Δ *are nontrivial, the lexicographic sum does not have rank* 1: {0} $\oplus_{\text{lex}} \Delta$ *is a non-trivial convex subgroup.*

- **Example 1.1.4** (Examples of valued fields). Any field with $\Gamma = \{0\}$ with $\nu(K^{\times}) = \{0\}$ and $\nu(0) = \infty$. This is called the trivial valuation.
 - The p-adic valuation v_p on \mathbb{Q} : for $x \in \mathbb{Q}^{\times}$, write $x = p^n \frac{c}{d}$ with $c, d \in \mathbb{Z}$, $p \nmid c, d$. Then $v_p(x) = n \in \mathbb{Z}$.
 - The p-adic valuation on the field of p-adics \mathbb{Q}_p : consider $\mathbb{Q}_p := \{\sum_{i \ge m} a_i p^i \mid m \in \mathbb{Z}, a_i \in \{0, 1, \dots p-1\}\}$ with carry-over on sum and multiplication. Define

$$v_p(\sum_{i \ge m} a_i p^i) = \min\{i \mid a_i \neq 0\}.$$

We will see that this coincides on \mathbb{Q} with v_p as defined in the bullet point above.

- The power series valuation v_t on a power series field: Consider K = k((t)). Write $v_t(\sum_{i \ge m} a_i t^i) := \min\{i \mid a_i \ne 0\}.$
- Note that so far, all of our examples had rank 1 (indeed, Z) value groups. More generally, let K = k((Γ)) := {Σ_{γ∈Γ} a_γt^γ | {γ | a_γ ≠ 0} is well-ordered}. Write ν_Γ(Σ_γ a_γt^γ) := min{γ | a_γ ≠ 0}.

²that is, an abelian group with a total order such that + and \leq are compatible

1.2 Basic properties and associated quantities

We will often write vK for the value group Γ of (K, v). Here is a list of basic properties:

- 1. v(1) = 0: indeed, $v(1) = v(1 \cdot 1) = v(1) + v(1)$,
- 2. $\nu(x) = \nu(-x) = -\nu(x^{-1})$ for all $x \in K$: note first that $0 = \nu(1) = \nu(-1) + \nu(-1)$, so (as ordered abelian groups are torsion-free), we have $\nu(-1) = 0$. The rest now follows immediately from the axioms for valuations.
- 3. v(x) < v(y) implies that $v(x + y) = \min\{v(x), v(y)\} = v(x)$: indeed, if v(x + y) > v(x) then $v(x) = v(x + y y) \ge \min\{v(x + y), v(-y)\} = \min\{v(x + y), v(y)\} > v(x)$, a contradiction.

Using these properties, it is easy to verify that the p-adic valuation we defined on Q and the restriction of the p-adic valuation we defined on Q_p coincide on Q: by property 2 above, it suffices to show that they coincide on any $n \in \mathbb{N} \setminus \{0\}$. Writing n base p, we get a finite p-adic expansion

$$n = a_0 p^0 + \dots a_m p^m$$

(for some $m \leq n$) and we get min{ $i \mid a_i \neq 0$ } = max{ $j \mid p^j \mid n$ }.

Remark 1.2.1. Any valued fields comes naturally with the following structure:

- $\mathcal{O}_{\nu} := \{x \in K \mid \nu(x) \ge 0\}$ is a valuation ring of K, i.e. for every $x \in K$ we have $x \in \mathcal{O}_{\nu}$ or $x^{-1} \in \mathcal{O}_{\nu}$,
- \mathcal{O}_{ν} has a unique maximal ideal, $\mathfrak{m}_{\nu} := \{ x \in K \mid \nu(x) > 0 \}$, as $\mathfrak{m}_{\nu} = \mathcal{O}_{\nu} \setminus \mathcal{O}_{\nu}^{\times}$
- *the quotient* $Kv := O_v/\mathfrak{m}_v$ *is called the residue field of* (K, v)*.*

Example 1.2.2. We work out the valuation ring, maximal ideal and residue field for each of the valued fields discussed in example 1.1.4:

- 1. *trivial valuation on* K: $O_{v} = K$, $\mathfrak{m}_{v} = \{0\}$, Kv = K,
- 2. p-adic valuation on \mathbb{Q} : $\mathbb{O}_{\nu_p} := \{c/d \in \mathbb{Q} \mid (c,d) = 1, d \neq 0, p \nmid d\} = \mathbb{Z}_{(p)},$ $\mathfrak{m}_{\nu_p} = p\mathbb{Z}_{(p)}, K\nu = \mathbb{Z}_{(p)}/p\mathbb{Z}_{(p)} \simeq \mathbb{F}_p,$
- 3. p-adic valuation on \mathbb{Q}_p : $\mathfrak{O}_{\nu_p} := \{\sum_{i \ge 0} a_i p^i \mid a_i \in \{0, \dots p-1\}\} = \mathbb{Z}_p$ (i.e., the ring of p-adic integers), with maximal ideal $\mathfrak{m}_{\nu_p} = p \mathfrak{O}_{\nu_p}$; similarly, $\mathsf{K}\nu \simeq \mathbb{F}_p$,
- 4. power series: for $K = k((\Gamma))$, we get $\mathcal{O}_{v} = k[[\Gamma]]$ and Kv = k.

1.3 Topology and Haar measure

We now take a step aside to introduce the Haar measure on the p-adic numbers.

Definition 1.3.1. *For* $\gamma \in \Gamma$ *,* $y \in K$ *, we define*

- 1. $B_{>\gamma}(y) := \{x \in K \mid v(x-y) > \gamma\}$, *the* open ball of radius γ around y,
- 2. $B_{\geq \gamma}(y) := \{x \in K \mid v(x-y) \geq \gamma\}$, the closed ball of radius γ around y.

Note that we have $B_{>0}(0) = \mathfrak{m}_{\nu} \subset B_{\geq 0}(0) = \mathcal{O}_{\nu}$.

Lemma 1.3.2. By the ultrametric inequality, for any two balls B_1 and B_2 we either have $B_1 \subseteq B_2, B_2 \subseteq B_1$ or $B_1 \cap B_2 = \emptyset$.

Proof. Indeed, given any ball $B_{\geq \gamma}(y)$ and any c in this ball, $B_{\geq \gamma}(c) = B_{\geq \gamma}(y)$: for any $x \in B_{\geq \gamma}(y)$, we have $\nu(x - c) = \nu(x - y + y - c) \geq \min\{\nu(x - y), \nu(y - c)\} \geq \gamma$. This gives one inclusion. The other is symmetric. The same argument works for open balls.

As a consequence, open (respectively, closed) balls form a neighbourhood base of an Hausdorff field topology τ_{ν} on K. Indeed, the naming 'open' and 'closed' is just suggestive: $K \setminus B_{>\gamma}(y) = \bigcup_{\nu(b-y) < \gamma} B_{>\nu(b-y)}(b)$ hence $B_{>\gamma}(y)$ is also closed, so it is a clopen; similarly for 'closed' balls. In particular, the topology generated by the open balls coincides with that generated by the closed balls.

Exercise 1.3.3. Show that τ_{v} is discrete if and only if v is the trivial valuation.

Remark 1.3.4. With respect to τ_{ν_p} , \mathbb{Q}_p is locally compact: indeed, \mathbb{Z}_p is compact (the rest follows from translations), which can be seen as either because of the isomorphism $\mathbb{Z}_p \simeq \lim_{\leftarrow} \mathbb{Z}/p^n\mathbb{Z} \subseteq_{closed} \prod_n \mathbb{Z}/p^n\mathbb{Z}$ (and the latter is compact by Tychonov's theorem as its a product of compact spaces since each $\mathbb{Z}/p^N\mathbb{Z}$ is finite) or because \mathbb{Z}_p is complete and totally bounded. In both of these arguments, the fact that $\mathsf{K}\nu$ is finite plays an important role. If $\mathsf{K}\nu$ is infinite, τ_{ν} is not locally compact, as $\mathfrak{O}_{\nu} := \bigsqcup_{r \in \mathsf{R}} (r + \mathfrak{m}_{\nu})$ with $\mathsf{R} \subseteq \mathfrak{O}_{\nu}^{\times}$ a system of representatives for $\mathsf{K}\nu$ will not admit a finite open subcover.

For a topological space τ , we use \mathcal{B} to denote the collection of *Borel sets*, that is the σ -algebra³ generated by the open sets.

For τ a group topology on (G, \cdot) , $S \subseteq G$ and $g \in G$, we use

$$g \cdot S = \{g \cdot s \mid s \in S\}$$

to denote the left translate of S. Note that if S is Borel, then $g \cdot S$ is also Borel.

Definition 1.3.5. *Let* (G, \cdot, τ) *be a topological group. A* Borel measure μ *on* G *is a measure on* G *that is defined on* \mathcal{B} *. A Borel measure is called* regular *if all of the following conditions hold:*

- $\mu(C) < \infty$ for all compact sets C
- $\mu(U) = \sup\{\mu(C) \mid C \subseteq U, C \text{ compact}\} \text{ for any } U \subseteq G \text{ open}$
- $\mu(A) = \inf\{\mu(U) \mid A \subseteq U, U \text{ open}\} \text{ for any } A \in \mathcal{B}$

Theorem 1.3.6 (Haar). Any locally compact, Hausdorff topological group admits a Haar measure, *i.e.*, a left-invariant regular non-zero Borel measure μ . If μ' is another such measure, then there is $\alpha \in \mathbb{R}$ such that $\mu = \alpha \cdot \mu'$.

Note that if μ is a Haar measure on G, then so is $\alpha \cdot \mu$ for any $\alpha \in \mathbb{R}_{>0}$. As \mathbb{Z}_p is compact (and hence has finite measure with respect to any Haar measure on \mathbb{Q}_p), we may fix the unique Haar measure μ such that $\mu(\mathbb{Z}_p) = 1$. Then, we get $\mu(p\mathbb{Z}_p) = \frac{1}{p}$, and for any $y \in K$ and $\gamma \in \mathbb{Z}$ we have $\mu(B_{\geq \gamma}(y)) = \frac{1}{p^{\gamma}}$ and $\mu(B_{>\gamma}(y)) = \frac{1}{p^{\gamma+1}}$.

 $^{^{3}}$ Recall that a σ -algebra is closed under countable unions, countable intersections and complements

Exercise 1.3.7. Verify that

$$\mu(\{b \in \mathbb{Z}_p : 3 \mid v_p(b)\} = \frac{1 - 1/p}{1 - (1/p)^3}$$

holds.

2 Lecture 2

2.1 Semi-algebraic sets

Throughout the section, let (K, v) be a valued field.

- **Definition 2.1.1.** A subset $A \subseteq K^n$ is called semi-algebraic if A is a finite Boolean combination of sets given by polynomial equalities (i.e. equalities of the form f(x) = 0, $f \in K[x_1, ..., x_n]$) and valuation inequalities (i.e. inequalities of the form $v(g_1(x)) \ge v(g_2(x)), g_1, g_2 \in K[x_1, ..., x_n]$).
 - A subset A ⊆ Kⁿ is called constructible if A is a finite Boolean combination of sets given by polynomial equalities.

In particular, constructible sets are semi-algebraic.

Example 2.1.2. A subset $A \subseteq K^1$ constructible iff A cofinite or finite. On the other hand, $A \subseteq K^1$ semi-algebraic iff A is a Boolean combination of singletons and balls (exercise!).

The following theorem was proved independently by Tarski and Chevalley (albeit in very different formulations and with rather different proofs).

Theorem 2.1.3 (Tarski/Chevalley). *If* K *is algebraically closed, then any projection* pr: $K^n \rightarrow K^i$ (for $n \ge i$) of a constructible subset of K^n is a constructible subset of K^i .

Remark 2.1.4. *The theorem above holds precisely in finite and in algebraically closed fields; e.g. in* $K = \mathbb{R}$ *you can project* $x^2 - y = 0$ *to the positive reals, which are not constructible.*

Our next big aim will be to approach the following theorem model-theoretically:

Theorem 2.1.5 (A. Robinson). *Let* (K, v) *a valued field such that* K *is algebraically closed. Then, the projection of any semi-algebraic set is semi-algebraic.*

2.2 First attempt at first-order logic

Definition by example: the language of rings, $\mathcal{L}_{ring} = \{0, 1, +, -, \cdot\}$. The language of ordered abelian groups $\mathcal{L}_{oag} = \{0, +, -, \leq\}$. The language of ordered monoids $\mathcal{L}_{oag}^+ = \{0, +, -, \leq, \infty\}$.

Definition 2.2.1. A first-order language \mathcal{L} is given by

- 1. *a set of constant symbols* $\{c_i \mid i \in I\}$ *, e.g.* 0, 1, ∞ *,*
- 2. a set of function symbols $\{f_j \mid j \in J\}$, each with a fixed arity, e.g. + and \cdot of arity 2 and of arity 1,

- 3. a set of relation symbols $\{R_k \mid k \in K\}$, each with a fixed arity, e.g. \leq of arity 2,
- 4. *a binary relation* =, *a fixed set of variables* { $v_i \mid i \in \mathbb{N}$ },
- 5. connectives $\land, \lor, \neg, \rightarrow, \longleftrightarrow$,
- 6. quantifiers \forall and \exists .

An \mathcal{L} -structure consists of nonempty set together with interpretation for each of the symbols. In particular, any unitary ring is naturally an \mathcal{L}_{ring} -structure, with the symbols interpreted in the obvious way.

 \mathcal{L} -formulas are built "in the obvious way", such that if you plug something into the variables that are not under the influence of a quantifier, you should get a statement that is either true or false. Again, definition by example: in the language of rings,

- 1. $\exists y(y \cdot y = x)$ makes sense,
- 2. $y^2 := y \cdot y$ does not make sense (in fact, it is a term, not a formula).

Definition 2.2.2. *A formula is quantifier-free if no quantifiers occur.*

Example 2.2.3. *Quantifier-free* \mathcal{L}_{ring} *-formulas are precisely finite Boolean combinations of formulae of the form* $f(\bar{x}) = 0$ *, for* $f \in \mathbb{Z}[x_1, \dots, x_n]$ *.*

Remark 2.2.4. If K is a field, then quantifier-free $\mathcal{L}_{(K)}$ -formulae (that is, \mathcal{L}_{ring} -fomulas where one additionally allows constants for the elements of K) define constructible sets, and viceversa.

Theorem 2.2.5. (*Tarski*) If K is algebraically closed, let T be the \mathcal{L} -theory saying "K is a field" and "every polynomial of degree n has a root in K", for $n \ge 2$; then T eliminates quantifiers.

Definition 2.2.6. A theory⁴ T eliminates quantifiers if for every \mathcal{L} -formula $\phi(\bar{x})$ there is a quantifier-free \mathcal{L} -formula $\psi(\bar{x})$ such that $T \vdash \forall x(\phi(x) \leftrightarrow \psi(x))$, i.e. in all models of T the two formulae define the same set.

Proof. (Sketch: why Chevalley and Tarski morally say the same thing) Enough to check $\phi(\bar{x}) \equiv \exists z \tilde{\phi}(\bar{x}, z)$ is equivalent to a quantifier-free formula. Then $\tilde{\phi}(\bar{x}, z)$ defines a constructible subset of K. Then $\operatorname{pr}_{\bar{x}}(\tilde{\phi}(\bar{x}, z))$ is constructible, which gives the desired qf-formulae equivalent to $\phi(\bar{x})$.

2.3 Ordered abelian groups of higher rank occur naturally in model theory

Theorem 2.3.1. (*Compactness*) If T is an \mathcal{L} -theory, and every finite subset of T has a model, then T has a model.

As a consequence, if $\Gamma \neq \{0\}$ is an ordered abelian group in \mathcal{L}_{oag} , then there is $\Gamma^* \equiv \Gamma$ (i.e. the same \mathcal{L}_{oag} -sentences hold in Γ and Γ^*) such that Γ^* has a non-trivial convex subgroup. Indeed, consider $\mathcal{L}' = \mathcal{L}_{oag} \cup \{c, c'\}$ and the \mathcal{L}' -theory given by

 $\mathsf{T} = \mathsf{Th}_{\mathcal{L}_{\text{cag}}}(\Gamma) \cup \{ n \cdot c' < c) \mid n \in \mathbb{N} \}.$

⁴A theory T is a set of \mathcal{L} -sentences (formulae without free variables). Intuitively, a theory is a set of axioms, and models are structures where these axioms hold. For example, the field axioms form an \mathcal{L}_{ring} -theory, with models being precisely all fields.

Every finite subsets of T has a model (it is finitely satisfiable in Γ !) and this gives you an element c' whose convex hull is a proper subgroup.

Even if we are only interested in valued fields with rank-1 value group, for a modeltheoretic study, we will have to consider value groups of higher rank!

3 Lecture 3

3.1 Second attempt at first-order logic

Goal: capture v: $K \twoheadrightarrow \Gamma \cup \{\infty\}$ model theoretically.

We will work with \mathcal{L}_{Γ} , a two-sorted language with one sort for K and one for $\Gamma \cup \{\infty\}$. On K, we have the language of rings $\{0, 1, +, \cdot, -\}$; on $\Gamma \cup \{\infty\}$, we have the language $\{0, +, \leq, \infty\}$; we have a function symbol ν : K $\rightarrow \Gamma \cup \{\infty\}$ between the sorts. Variables come attached with a sort, and quantifiers only run over a sort.

Definition 3.1.1. We will call ACVF the \mathcal{L}_{Γ} -theory given by,

- 1. $K \models ACF$, *i.e.*, K is algebraically closed,
- 2. v: $K \to \Gamma \cup \{\infty\}$ is a non-trivial valuation (in particular, $\Gamma \vDash OAG$).

Remark 3.1.2. *If* $(K, v) \models$ ACVF, *then*

- 1. Γ is divisible: indeed, if n > 0 and $\gamma \in \Gamma$, say $\gamma = \nu(a)$ for some $a \in K$, then $x^n a$ has a root b in K, and then $\nu(a) = \nu(b^n) = n\nu(b)$,
- 2. Kv is algebraically closed: indeed, if we take $P(X) = X^n + \sum_{i=0}^{n-1} a_i X^i \in O_v[X]$, then all roots of P lie in O_v . Otherwise, if v(b) < 0 then for all i < n, $v(b^i) < 0$, so

$$nv(b) < iv(b) \leq \underbrace{v(a_i)}_{\geq 0} + iv(b)$$

and thus v(P(b)) = nv(b) < 0. Thus, $res(P) = X^n + \sum_{i=0}^{n-1} res(a_i)X^i$ splits in Kv.

The converse does not hold, the problem arises through immediate extensions. For the converse to hold, one needs to assume further that (K, v) *satisfies Hensel's Lemma and is defectless.*

Theorem 3.1.3. (*A. Robinson, Weispfenning*) ACVF eliminates quantifiers in \mathcal{L}_{Γ} .

3.2 Quantifier elimination

The key step for Robinson's theorem is the following embedding lemma:

Lemma 3.2.1. Let M and N be models of ACVF and let $A \subseteq M$ be an \mathcal{L}_{Γ} -substructure. Assume N is $|M|^+$ -saturated. Then any \mathcal{L}_{Γ} -embedding f: $A \to N$ extends to an \mathcal{L}_{Γ} -embedding g: $M \to N$.

If you don't like saturation: you can prove the lemma under the assumption that N is $|M|^+$ -spherically complete (that is: in N, every nested sequence of |M|-many balls is non-empty). One then proves quantifier elimination by a back-and-forth argument.

Theorem 3.2.2. (Macintyre, McKenna, van den Dries)

- 1. If K is infinite, and Th(K) eliminates quantifiers in the language of rings, then K is algebraically closed.
- 2. If (K, v) eliminates quantifiers, and v is non-trivial, then $(K, v) \models ACVF$.

3.3 What about the p-adics or $\mathbb{C}((t))$?

Consider $P_n(X) \equiv \exists Y(Y^n = X)$.

Lemma 3.3.1. For every $n \ge 2$, $P_n(\mathbb{Q}_p)$ is not semi-algebraic.

Proof. Assume $P_n(\mathbb{Q}_p)$ is semi-algebraic. Then $\mathbb{Q}_p \setminus P_n(\mathbb{Q}_p)$ is also semi-algebraic. Note that if $P_n(\mathbb{Q}_p)$ does not contain a ball around 0, then there would be a "punctured" ball around 0 in the complement.

In particular, there is B around 0 such that either $B \subseteq P_n(\mathbb{Q}_p)$ or $B \setminus \{0\} \subseteq P_n(\mathbb{Q}_p)^c$. This means that, for example, there is γ such that $\nu(x) \ge \gamma \implies x \in P_n(\mathbb{Q}_p)$. However, $p^{n\gamma+1}$ has valuation $\ge \gamma$ but it is not an n-th power. Similarly for the second case (since $n \div \nu_p(p^n)$. In other words, any ball B around 0 must intersect both $P_n(\mathbb{Q}_p)$ and $P_n(\mathbb{Q}_p)^c$.

Note that by substituting p with t, we obtain the same result in $\mathbb{C}((t))$.

Nonetheless, using these P_n 's, we still obtain control over the definable sets:

Theorem 3.3.2 (Macintyre). For each $n \ge 1$, let $P_n(X)$ denote a unary relation interpreted as $P_n(X) \equiv \exists Y(Y^n = X)$. Then the theory $Th(\mathbb{Q}_p)$ eliminates quantifiers in the Macintyre language $\mathcal{L}_{Mac} = \mathcal{L}_{ring} \cup \{P_n \mid n \ge 1\}$.

In other words, every definable set in the language of rings is equivalent — modulo $Th(\mathbb{Q}_p)$ — to a Boolean combination of sets of the form $f(\bar{x}) = 0$ and $P_n(g(\bar{x}))$, for $f(\bar{x})$ and $g(\bar{x})$ polynomials over \mathbb{Z} . In particular, all definable sets in \mathbb{Q}_p are Boolean combinations of sets of the form $f(\bar{x}) = 0$ and $P_n(g(\bar{x}))$, for f, $g \in \mathbb{Q}_p[X_1, \ldots, X_m]$.

Theorem 3.3.3 (Folklore). *The same holds over* $\mathbb{C}((t))$.

BUT wait a moment, what happened to my semi-algebraic sets? Are they still definable?

3.4 Definability of valuations

Theorem 3.4.1 (Hensel's Lemma). *The valued fields* (\mathbb{Q}_p, ν_p) *and* $(\mathbb{C}((t)), \nu_t)$ *are* henselian, *i.e. given* $b \in \mathcal{O}_{\nu}$ *and* $f \in \mathcal{O}_{\nu}[X]$ *with* $f(b) \in \mathfrak{m}_{\nu}$, $f'(b) \notin \mathfrak{m}_{\nu}$, *then there is* $\beta \in \mathcal{O}_{\nu}$ *with* $f(\beta) = 0$ *and* $\beta - b \in \mathfrak{m}_{\nu}$.

Proof. By Newton approximation. Choose $a_0 = b$ and define a sequence $a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}$. It is a Cauchy sequence with respect to the p-adic (respectively, t-adic) metric. By completeness, a_n converges to some $\beta \in \mathcal{O}_{\nu}$ which is a root of f. \Box

Theorem 3.4.2 (J. Robinson). We can define $\mathbb{Z}_p \subseteq \mathbb{Q}_p$ in the language of rings via $\varphi_p(X) \equiv \exists Y(Y^2 = 1 + pX^2)$, for $p \neq 2$, and via $\varphi_2(X) \equiv \exists Y(Y^3 = 1 + pX^3)$ in \mathbb{Q}_2 . Similarly, we can define $\mathbb{C}[t] \subseteq \mathbb{C}((t))$ via $\varphi_t(X) \equiv \exists Y(Y^2 = 1 + tX^2)$.

In \mathbb{Q}_p , this implies that all closed balls are definable without parameters in the language of rings (note that p = 1 + ... 1). Since \mathfrak{m}_v is then also definable without parameters (as $\mathfrak{m}_v = p \mathcal{O}_v$), all open balls are also definable. Note that we have $\varphi_p \equiv P_2(1 + pX^2)$ (resp. $\varphi_2 \equiv P_3(1 + pX^3)$), so \mathbb{Z}_p and \mathfrak{m}_v (and hence all balls) are indeed definable without quantifiers (and without parameters) in \mathcal{L}_{Mac} .

Proof. (for p ≠ 2 in Q_p) Take any b ∈ Q_p. We want to show that b ∈ Z_p ↔ ∃Y(Y² = 1 + pb²). First suppose that ν(b) < 0: since 2 ∤ ν(p), then 2 ∤ ν(b²p) < 0, so ν(b²p) = ν(1 + b²p) is not divisible by 2, and thus 1 + b²p ∉ P₂(Q_p). Vice versa, suppose b ∈ 0_ν and consider f(Y) = Y² − 1 − b²p. This is a polynomial over Z_p and we have f(1) ∈ pZ_p, f'(1) = 2 ∉ pZ_p. By henselianity, we get β ∈ Z_p such that f(β) = 0, i.e. β² = 1 + b²p.

In $(\mathbb{C}((t)), v_t)$, the formula $\varphi_t(X)$ used a parameter for t. This is however not necessary:

Theorem 3.4.3 (Ax). Let K be a field with char(K) $\neq 2$. In (K((t)), v_t), the valuation ring \mathcal{O}_v is defined by the (parameter-free) \mathcal{L}_{ring} -formula

$$\Phi(X) \equiv \exists W, Y \forall U, X_1, X_2 \exists Z \forall Y_1, Y_2 [(Z^2 = 1 + WX_1^2 X_2^2 \lor Y_1^2 \neq 1 + WX_1^2 \lor Y_2^2 \neq 1 + WX_2^2) \\ \land U^2 \neq W \land Y^2 = 1 + WX^2].$$

The formula $\Phi(X)$ takes the union over all $\varphi(X, a) \equiv \exists Y \ (Y^2 = 1 + aX^2)$ for $a \in K((t))$, provided that a is not a pth power and that $\varphi(X, a)$ is closed under multiplication.

Thus, one can deduce that all balls in $\mathbb{C}((t))$ are again definable without quantifiers (and without parameters) in \mathcal{L}_{Mac} .

4 Some literature for further reading

4.1 Model theory

- 1. Tent, Ziegler A course in model theory
- 2. Hils, Loeser A first journey through logic
- 3. Marker Model theory: an introduction

4.2 Model theory of valued fields

- 1. van den Dries *Lectures on the model theory of valued fields* (chapter in *Model theory in algebra, analysis and arithmetic*)
- 2. Hils *Model theory of valued fields* (chapter in *Lectures in model theory,* see also the previous chapter Jahnke *An introduction to valued fields* in the same volume)

4.3 Model theory of the p-adics

- 1. Prestel, Roquette Formally p-adic fields
- 2. Macintyre's original paper